Terpyridyl Ligands (terpyridyl + ligand)

Distribution by Scientific Domains


Selected Abstracts


A Theoretical Investigation of Substituent Effects on the Absorption and Emission Properties of a Series of Terpyridylplatinum(II) Acetylide Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2005
Xiao-Juan Liu
Abstract A comprehensive calculational investigation has been carried out on a series of complexes of the type [(terpyridyl-R1)Pt(C,C-R2)], where terpyridyl-R1 is a series of substituted 2,2':6',2"-terpyridyl ligands and C,C-R2 is a series of substituted acetylide ligands. In one series of complexes (I), the energy of the electronic excited state is varied by changing the substituents on the terpyridyl ligand (R1). In a second series of complexes (II), this electronic structure variation is obtained by changing the para substituents (R2) of the acetylide ligand. The effect of varying the substituents on the lowest-energy excited states of the complexes has been assessed by calculating their electronic structures and excitation energies. We anticipated that introduction of electron-withdrawing substituents on the terpyridyl ligand will benefit the LLCT (or MLCT) and prohibit the nonradiative pathways via d-d transitions in these complexes; introduction of electron-donating substituents on the acetylide ligand can also prohibit the nonradiative pathways by increasing the energy gaps between the HOMO,LUMO and d-d transitions. The results also reveal that the lowest-energy excitations of all complexes of series I and IIa,b complexes are dominated by a ,(C,C),,,,*(terp) (LLCT) transition mixed with some energetically d,(Pt),,,terpyridyl (MLCT) transition. However, for the complexes IIc,IId, in which phenyl rings are introduced on the acetylide ligand, the lowest-lying absorptions of IIc and IId are predominately LLCT in character, with less MLCT mixture, due to a lower contribution of the Pt(d) orbital to the HOMO, while for IIe, with a stronger donor on the acetylide, the lowest-lying absorption is completely LLCT in character. The absorption and emission calculations using the TDDFT method are based on the optimized geometries obtained at the B3LYP/LanL2DZ and CIS/LanL2DZ levels, respectively. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ions

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2010
Yi Cui
Abstract Two well-defined triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands were synthesized through Suzuki coupling polymerization and were further characterized by 1H-NMR, 13C-NMR, gel permeation chromatography, Infrared, and UV-vis spectra. Polymer P-1, terpyridine-bearing poly(triphenylamine- alt -fluorene) with a high fluorescence quantum yield (62%) shows much higher sensitivities toward Fe3+, Ni2+, and Cu2+ as compared with the other metal ions investigated. Especially, Fe3+ can lead to an almost complete fluorescence quenching of polymer P-1. Whereas, the analogous polymer P-2, in which N -ethylcarbazole repeat units replace the fluorene units in P-1, shows a very poor selectivity. It demonstrates that polymers with a same receptor may show different sensitivity to analytes owing to their different type of backbones. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1310,1316, 2010 [source]


Novel Molecular Building Blocks Based on the Boradiazaindacene Chromophore: Applications in Fluorescent Metallosupramolecular Coordination Polymers

CHEMISTRY - A EUROPEAN JOURNAL, Issue 15 2009
Ö. Altan Bozdemir Dr.
Abstract Bright polymers: Fluorescent coordination polymers made up of versatile functionalized bodipy (boron-dipyrrin) chromophore building blocks, such as that depicted, are described. Polymerization is signaled by changes in fluorescence emission intensity and shifts in peak emission wavelengths. We designed and synthesized novel boradiazaindacene (Bodipy) derivatives that are appropriately functionalized for metal-ion-mediated supramolecular polymerization. Thus, ligands for 2-terpyridyl-, 2,6-terpyridyl-, and bipyridyl-functionalized Bodipy dyes were synthesized through Sonogashira couplings. These fluorescent building blocks are responsive to metal ions in a stoichiometry-dependent manner. Octahedral coordinating metal ions such as ZnII result in polymerization at a stoichiometry corresponding to two terpyridyl ligands to one ZnII ion. However, at increased metal ion concentrations, the dynamic equilibria are re-established in such a way that the monomeric metal complex dominates. The position of equilibria can easily be monitored by 1H,NMR and fluorescence spectroscopies. As expected, although open-shell FeII ions form similar complex structures, these cations quench the fluorescence emission of all four functionalized Bodipy ligands. Bu çal,,mada, metal iyonlar, arac,l,,,yla supramoleküler polimerizasyon için uygun ,ekilde fonksiyonland,r,lm,, yeni boradiazaindasen (Bodipy) türevleri tasarlanm,, ve sentezlenmi,tir. Bu amaçla, ligand olarak Sonogashira reaksiyonu ile 2- ve 2,6-terpiridil ve bipiridil gruplar,n, içeren Bodipy boyarmaddeleri sentezlenmi,tir. Bu floresan yap, bloklar, stokiyometriye ba,l, bir biçimde metal iyonlar,na duyarl,l,k gösterirler. ZnIIgibi oktahedral koordinasyon e,ilimi olan metal iyonlar,, iki terpiridil ligand,na bir ZnIIiyonu tekabül edecek bir stokiyometride polimerizasyona yol açmaktad,rlar. Bununla beraber, yüksek metal iyonu deri,imlerinde monomerik metal kompleksinin bask,n olaca,, bir biçimde, dinamik dengeler yeniden kurulmaktad,r. Bu dengelerin pozisyonu1H,NMR ve fluoresans spektroskopileriyle kolayl,kla izlenebilmektedir. Beklenildi,i gibi, benzer kompleks yap,lar olu,turmas,na ra,men FeIIiyonu, sentezlenen tüm fonksiyonalize Bodipy ligandlar,n,n emisyonlar,n, sönümlendirmektedir. [source]