Home About us Contact | |||
Tear Resistance (tear + resistance)
Selected AbstractsEffects of solidification structure on tear resistance of Al,7% Si,0.4% Mg cast alloysFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 1 2004S.-W. HAN ABSTRACT The tear resistance behaviour of Al,7% Si,0.4% Mg cast alloys was examined using Kahn-type tear test specimens. Tests were performed for two permanent mould casts with an ordinary dendrite structure and a semi-liquid die cast with a globular cell and fine grain structure. The microstructure of the two permanent mould casts was controlled by the cooling rates and the addition of Ti elements. Tear resistance was evaluated by the ,pop-in' stress, the energies required for crack initiation, UEi and the crack propagation, UEp. Special attention was paid to an effective microstructural parameter for tear resistance improvement. Pop-in, indicating sudden crack extension and arrest, was observed in all specimens. Homogeneous deformation occurs near the notch tip of the semi-liquid die cast, characterized by a refined grain structure. Refinement of the grain size is more effective than that of the dendrite cell size or eutectic Si particle size to increase the energy for crack initiation. Unit propagation energy, UEp, can be converted into a critical stress intensity factor, Kc, which in the semi-liquid die cast was improved due to an increased amount of slant or shear fracture surface. [source] The Role of Filler Networking in Fatigue Crack Propagation of Elastomers under High-Severity ConditionsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009Manfred Klüppel Abstract Structural parameters of the filler network have been evaluated by fitting quasi-static stress/strain cycles to the dynamic flocculation model. It is found that the size of filler clusters as well as the strength of filler,filler bonds increase with filler loading and carbon black activity (specific surface). This correlates with the behavior of the tear resistance obtained for pulsed loading under high-severity conditions, implying that the characteristics of the filler network govern the fracture properties of filled elastomers. The behavior of the power law exponent of fatigue crack propagation versus tearing energy can be explained by flash temperature effects in the crack tip area. [source] High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: Mechanical and morphological studiesPOLYMER COMPOSITES, Issue 9 2010P.C. Thomas Acrylonitrile-butadiene rubber (NBR) nanocomposites with layered silicate (LS), calcium phosphate (CP), and titanium dioxide (TO) of different particle size were prepared in an open two-roll mixing mill at different filler loading in presence of sulphur as vulcanizing agent. The layered silicate (LS) filled system showed outstanding enhancement in mechanical properties in comparison with nanocalcium phosphate (CP) and titanium dioxide (TO). The variations in properties can be attributed to the extent of intercalation/exfoliation, which was highly influenced by the filler size. The layered silicate filled system at 20 phr showed nearly 349% increase in tensile strength compared to pure NBR whereas an increase of 110% and 84% were shown by CP and TO filled systems respectively. The modulus enhancements were in the order of 200%, 63% and 22%, respectively compared to the unfilled system. The increase in tear resistance was in the order of 230%, 115%, and 41% respectively for the filled systems in comparison with unfilled NBR. The significant enhancements in mechanical properties were supported by the morphological analysis. POLYM. COMPOS., 31:1515,1524, 2010. © 2009 Society of Plastics Engineers [source] Production of leather-like composites using short leather fibers.POLYMER COMPOSITES, Issue 6 2002Leather-like composites were prepared by addition of chemically modified short leather fibers (SLF) into a plasticized polyvinyl chloride (pPVC) matrix. The fibers were subjected to chemical modification by emulsion polymerization to achieve good interfacial adhesion between SLF and the pPVC matrix. The SLF with chemical modification were obtained from three different reaction conditions where these SLF have different percentages of grafted and deposited PMMA polymer onto the fiber surface. The incorporation of the SLF into the thermoplastic matrix was carried out using a torque-rheometer and the composites obtained were molded by compression. Tensile and tear mechanical tests were performed on composite samples, and the morphology of the fractured surfaces was analyzed using scanning electron microscopy (SEM). The results show that the incorporation by grafting of polymethyl metacrylate (PMMA) onto the fibers produced a significant improvement of their interfacial adhesion to pPVC, promoting the compatibilization between the fiber surface and matrix. The findings are discussed and interpreted in terms of enhanced adhesion at phase boundaries. Overall, the results confirm that it is possible to produce modified leather composites based on a pPVC matrix, which exhibit relatively high tensile strength, tear resistance and flexibility. These composites are very suitable candidate materials for applications in the footwear industry. [source] The Characteristics of Polyethylene Film for Stretch and Cling Film ApplicationsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2004C.M. Small Part I. A range of polyethylene films were prepared from metallocene linear low density polyethylene (m-LLDPE), linear low density polyethylene (LLDPE) and ultra low density polyethylene (ULDPE) resins, containing 0 and 8% polyisobutylene (PIB). FTIR, DSC and mechanical analysis techniques were used to investigate the effect of co-monomer type, density and melt flow index (MFI) on the mechanical performance, orientation and crystallinity of these films. The study established that co-monomer type and MFI were the greatest factors influencing mechanical performance and crystallinity. Crystallinity was found to be the most influential factor governing PIB migration in these films and this in turn was related to polymer type, density and MFI, High MFI, octene co-monomer films exhibited the highest orientation, tear resistance and tack strength and would therefore be suitable for stretch film applications. Ultra low-density polymers gave relatively low tack strength and poor overall mechanical performance. Part II. A range of ethyl vinyl acetate (EVA)/m-LLDPE/EVA co-extruded films was manufactured, with vinyl acetate (VA) co-monomer content of 6, 12 and 18% and PIB content from 0,20%. The films were aged at 45d,C for up to 28 days, to enable tack (cling) development. The results show that film tack strength improved significantly with ageing. Increased VA concentration in the surface layer also showed significant improvement in film tack strength. The film tensile strength, elongation and tear properties in both machine direction (MD) and transverse direction (TD) were not significantly affected by increase in PIB concentration. However, increased VA content showed slight improvement in MD mechanical performance of the films, TD properties were relatively unaffected. Films with 12 to 18% VA in the surface layers produced high surface tack film and the mechanical performance of these films were comparable to mono-layer polyethylenes. These films are suitable for stretch wrap applications and have reduced the overall concentrations of tack additives, though high VA films were more difficult to process. [source] |