Home About us Contact | |||
Tartrate-resistant Acid Phosphatase (tartrate-resistant + acid_phosphatase)
Selected AbstractsOsteoblastic Tartrate-Resistant Acid Phosphatase: Its Potential Role in the Molecular Mechanism of Osteogenic Action of Fluoride,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003K-H William Lau Abstract Although type 5 TRACP is recognized as a histochemical and biochemical marker of osteoclasts, there is evidence that bone forming cells, osteoblasts, and osteocytes also express a type 5 TRACP. Accordingly, an osteoblastic type 5 TRACP has been purified from human osteoblasts and from bovine cortical bone matrices. Comparison of biochemical properties of osteoblastic type 5 TRACP with those of osteoclastic type 5 TRACP suggests that osteoblastic type 5 TRACP is a different isoenzyme from osteoclastic type 5 TRACP. Two properties of osteoblastic type 5 TRACP may be relevant to its physiological functions: (1) it acts as a protein-tyrosine phosphatase (protein tyrosine phosphorylation) under physiologically relevant conditions, and (2) it is sensitive to inhibition by clinically relevant concentrations of fluoride. Because fluoride is a stimulator of osteoblastic proliferation and differentiation and a potent osteogenic agent and because protein tyrosine phosphorylation plays an important regulatory role in cell proliferation and differentiation, these unique properties and other evidence summarized in this review led to the proposal that the osteogenic action of fluoride is mediated, at least in part, by the fluoride-mediated inhibition of osteoblastic type 5 TRACP/protein tyrosine phosphorylation, which leads to a stimulation of osteoblast proliferation and differentiation, and subsequently, an increase in bone formation. [source] CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patientsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004Francesco Grassi Chemokines are involved in a number of inflammatory pathologies and some of them show a pivotal role in the modulation of osteoclast development. Therefore, we evaluated the role of CXCL12 chemokine on osteoclast differentiation and function and we analyzed its expression on synovial and bone tissue biopsies from rheumatoid arthritis (RA) patients. Osteoclasts were obtained by 7 days in vitro differentiation with RANKL and M-CSF of CD11b positive cells in the presence or absence of CXCL12. The total number of osteoclast was analyzed by Tartrate-resistant acid phosphatase (TRAP)-staining and bone-resorbing activity was assessed by pit assay. MMP-9 and TIMP-1 release was evaluated by ELISA assay. CXCL12 expression on biopsies from RA patients was analyzed by immunohistochemistry. Osteoclasts obtained in the presence of CXCL12 at 10 nM concentration displayed a highly significant increase in bone-resorbing activity as measured by pit resorption assay, while the total number of mature osteoclasts was not affected. The increased resorption is associated with overexpression of MMP-9. Immunostaining for CXCL12 on synovial and bone tissue biopsies from both rheumatoid arthritis (RA) and osteoarthritis (OA) samples revealed a strong increase in the expression levels under inflammatory conditions. CXCL12 chemokine showed a clear activating role on mature osteoclast by inducing bone-resorbing activity and specific MMP-9 enzymatic release. Moreover, since bone and synovial biopsies from RA patients showed an elevated CXCL12 expression, these findings may provide useful tools for achieving a full elucidation of the complex network that regulates osteoclast function in course of inflammatory diseases. J. Cell. Physiol. 199: 244,251, 2004© 2003 Wiley-Liss, Inc. [source] Melatonin suppresses osteoclastic and osteoblastic activities in the scales of goldfishJOURNAL OF PINEAL RESEARCH, Issue 4 2002Nobuo Suzuki Abstract: The effects of melatonin on osteoclastic and osteoblastic cells were examined using a culture system of the goldfish scale. Tartrate-resistant acid phosphatase (TRACP) and alkaline phosphatase (ALP) were used as markers of osteoclastic and osteoblastic cells, respectively. In Earle's minimum essential medium containing melatonin (10,9 to 10,5 m), activities of both enzymes in scales were significantly suppressed at 6 hr after incubation (TRACP: 10,8, 10,6, 10,5 m; ALP: 10,7 to 10,5 m), but at 18 hr only ALP activity was significantly lowered (10,8, 10,7 m). Estradiol-17ß (E2) enhanced both activities, which were significantly inhibited and brought down to the level of the controls when co-incubated with E2 and melatonin (TRACP at 6 hr: 10,9 to 10,5 m; ALP at 6 hr: 10,7 m; ALP at 18 hr: 10,8 m). Moreover, using reverse-transcription polymerase chain reaction, the mRNA expression of the estrogen receptor (ER) and insulin-like growth factor (IGF)-1, which are related to osteoblastic growth and differentiation, was decreased in the melatonin-treated scales. These results suggest that melatonin acts directly on the scale osteoclastic and osteoblastic cells where it suppresses the ALP activity via down-regulation of ER and IGF-1 mRNAs expression. This is the first report on the function of melatonin in osteoclasts and on the suppressive effect of melatonin in osteoblasts among vertebrates. [source] Reduced growth hormone receptor immunoreactivity in osteoclasts adjacent to the erupting molar in the incisor-absent (osteopetrotic) ratEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2003Anne L. Symons First molars fail to erupt in the incisor-absent (ia/ia) rat because of a defect in osteoclast function. Growth factors that regulate local bone metabolism include growth hormone (GH), insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF) and interleukin-1 alpha (IL- 1,). Since osteoclast function may be affected by these factors, the aim of this study was to determine the distribution of GH receptor (GHr), IGF-I, EGF and IL-1,, in osteoclasts located occlusal to the erupting first molar, in the ,eruption pathway', in normal and ia/ia rats. Sagittal sections of the first molar and adjacent bone from 3- and 9-d-old animals were examined. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP). The TRAP-positive osteoclast cell numbers were higher in ia/ia animals at 3 and 9 days-of-age. In the ia/ia group, fewer osteoclasts were GHr- and IGF-I-positive at 3 d of age, and at 9 d of age fewer osteoclasts were GHr-positive. In the ia/ia rat, defective osteoclast function failed to resorb bone to provide an eruption pathway for the lower first molar. The expression of GHr, and to some degree IGF-I, by these osteoclasts was reduced, which may be related to their ability to differentiate and function. [source] Bumetanide, the Specific Inhibitor of Na+ -K+ -2Cl, Cotransport, Inhibits 1,,25-Dihydroxyvitamin D3 -Induced Osteoclastogenesis in a Mouse co-culture SystemEXPERIMENTAL PHYSIOLOGY, Issue 5 2003Hyun-A Lee The Na+ -K+ -2Cl, cotransporter (NKCC1) is responsible for ion transport across the secretory and absorptive epithelia, the regulation of cell volume, and possibly the modulation of cell growth and development. It has been reported that a variety of cells, including osteoblasts, contain this cotransporter. In this study, the physiological role of NKCC1 in osteoclastogenesis was exploited in a co-culture system. Bumetanide, a specific inhibitor of NKCC1, reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. In order to investigate the mechanism by which bumetanide inhibits osteoclastogenesis, the mRNA expressions of the receptor activator of nuclear factor (NF)-,B ligand (RANKL) and osteoprotegerin (OPG) were analysed by RT-PCR. Exposure of osteoblastic cells to a medium containing 1 µM bumetanide reduced RANKL mRNA expression induced by 10 nM 1,,25-dihydroxyvitamin D3 (1,,25(OH)2D3, in a dose-dependent manner. In addition, RANKL expression was also analysed with enzyme-linked immunosorbant assay (ELISA) using anti-RANKL antibody. The expression of RANKL was decreased with the increase of bumetanide concentration. In contrast, the expression of OPG mRNA, a novel tumour necrosis factor (TNF) receptor family member was increased in the presence of bumetanide. These results imply that bumetanide inhibits osteoclast differentiation by reducing the RANKL/OPG ratio in osteoblastic cells. However, no significant difference in M-CSF mRNA expression was observed when bumetanide was added. Also, we found that the phosphorylation of c-Jun NH2 -terminal kinase (JNK), which regulates the activity of various transcriptional factors, was reduced by bumetanide treatment. Conclusively, these findings suggest that NKCC1 in osteoblasts has a pivotal role in 1,,25(OH)2D3 -induced osteoclastogenesis partly via the phosphorylation of JNK. [source] Use of a Phage Display Technique to Identify Potential Osteoblast Binding Sites Within Osteoclast Lacunae,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2002Tzong-Jen Sheu Abstract There is a temporal coupling between the processes of bone resorption and bone formation in normal skeletal remodeling. That is, osteoblastic activity usually follows episodes of osteoclastic activity. However, what has not been universally appreciated is that there also is a spatial coupling between these processes. Bone formation only occurs in the immediate vicinity of the resorptive event. In this study, we describe a phage display technique that has been used to identify the mechanisms by which osteoblasts recognize components of the prior resorbed lacunar surface. Using a type V tartrate-resistant acid phosphatase (TRAP) as the bait and a random peptide M13 phage display library as the probe, we have identified specific sequences that show a very high affinity for TRAP. One of these peptides, designated clone 5, has a subnanomolar Kd for TRAP, interacts with TRAP in a Far-Western assay, binds exclusively to TRAP within osteoclast lacunae, is present in osteoblasts, and can effectively block osteoblast binding to resorption surfaces. The clone 5 peptide shows a high homology to glypican 4 (GPC4), a proteoglycan attachment receptor found in a number of cell types. [source] Female Estrogen Receptor ,,/, Mice Are Partially Protected Against Age-Related Trabecular Bone LossJOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2001Sara H. Windahl Abstract Recently, it has been shown that inactivation of estrogen receptor , (ER-,) by gene targeting results in increased cortical bone formation in adolescent female mice. To study the possible involvement of ER-, in the regulation of the mature skeleton, we have extended the analyses to include 1-year-old ER-, knockout mice (ER-,,/,). Male ER-,,/, mice did not express any significant bone phenotypic alterations at this developmental stage. However, the increase in cortical bone parameters seen already in the adolescent female ER-,,/, mice was maintained in the older females. The aged female ER-,,/, mice further exhibited a significantly higher trabecular bone mineral density (BMD) as well as increased bone volume/total volume (BV/TV) compared with wild-type (wt) mice. This was caused by a less pronounced loss of trabecular bone during adulthood in female ER-,,/, mice. The growth plate width was unaltered in the female ER-,,/, mice. Judged by the expression of the osteoclast marker tartrate-resistant acid phosphatase (TRAP) and cathepsin K (cat K; reverse-transcription-polymerase chain reaction [RT-PCR]) as well as the serum levels of C-terminal type I collagen cross-linked peptide, bone resorption appeared unaffected. However, an increase in the messenger RNA (mRNA) expression levels of the osteoblast marker core-binding factor ,1 (Cbfa1) suggested an anabolic effect in bones of old female ER-,,/, mice. In addition, the mRNA expression of ER-, was augmented, indicating a role for ER-, in the development of this phenotype. Taken together, the results show that ER-, is involved in the regulation of trabecular bone during adulthood in female mice and suggest that ER-, acts in a repressive manner, possibly by counteracting the stimulatory action of ER-, on bone formation. [source] Prostaglandin E2 Induces Expression of Receptor Activator of Nuclear Factor,,B Ligand/Osteoprotegrin Ligand on Pre-B Cells: Implications for Accelerated Osteoclastogenesis in Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2000Masahiro Kanematsu Abstract Estrogen deficiency causes bone loss as a result of accelerated osteoclastic bone resorption. It also has been reported that estrogen deficiency is associated with an increase in the number of pre-B cells in mouse bone marrow. The present study was undertaken to clarify the role of altered B lymphopoiesis and of the receptor activator of nuclear factor-,B ligand (RANKL), a key molecule in osteoclastogenesis, in the bone loss associated with estrogen deficiency. In the presence of prostaglandin E2 (PGE2), the activity to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells was significantly greater in bone marrow cells derived from ovariectomized (OVX) mice than in those from sham-operated mice. Northern blot analysis revealed that PGE2 increased the amount of RANKL messenger RNA (mRNA) in bone marrow cells, not only adherent stromal cells but nonadherent hematopoietic cells; among the latter, RANKL mRNA was more abundant in OVX mice than in sham-operated mice and was localized predominantly in B220+ cells. Flow cytometry revealed that most B220+ cells in bone marrow were RANKL positive and that the percentage of RANKL-positive, B220low cells was higher in bone marrow from OVX mice than in that from sham-operated mice. The increase in the expression of RANKL and the percentage of these cells in OVX mice was abolished by the administration of indomethacin in vivo. PGE2 also markedly increased both the level of RANKL mRNA and cell surface expression of RANKL protein in the mouse pre-B cell line 70Z/3. Finally, osteoclastogenic response to PGE2 was reduced markedly by prior depletion of B220+ cells, and it was restored by adding back B220+ cells. Taken together with stimulated cyclo-oxygenase (COX)-2 activity by tumor necrosis factor , (TNF-,) and interleukin-1 (IL-1) in estrogen deficiency, these results suggest that an increase in the number of B220+ cells in bone marrow may play an important role in accelerated bone resorption in estrogen deficiency because B220+ cells exhibit RANKL on the cell surface in the presence of PGE2, thereby leading to accelerated osteoclastogenesis. [source] Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesisJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Md Mizanur Rahman Abstract Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-,B ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-,, interleukin (IL)-1-,, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-, and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-,B activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model. [source] Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathwayJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2005Rania Al-Shami Abstract This study examined the role of osteopontin (OPN), a phosphorylated secreted glycoprotein, in the promotion of trophoblastic cell migration, an early event in the embryo implantation process. Three human choriocarcinoma cell lines, namely JAR, BeWo, and JEG-3, were treated with variants of OPN differing in the extent of phosphorylation following sequential dephosphorylation with tartrate-resistant acid phosphatase (TRAP), and their migratory response was measured. The highly phosphorylated human milk form of OPN (OPN-1) strongly triggered migration in all three cell lines, whereas the less phosphorylated variants, OPN-2a and OPN-2b, failed to stimulate migration. JAR cell migration in response to OPN-1 was accompanied by a rapid rearrangement of actin filaments to the cellular membrane. Using broad spectrum protein kinase profiling, we identified p70 S6 kinase as a major signal transduction pathway activated by OPN-1 during the migratory response in JAR cells. Activation was blocked completely by rapamycin and LY294002, thus demonstrating that OPN-1-stimulated migration occurs through mTOR and PI3K pathways, respectively. Conversely, PD98059 did not affect the activation of p70 S6 kinase by OPN-1, therefore, this response does not involve the Ras/ MAPK signaling cascade. Together, these data show that the highly phosphorylated human OPN-1 can stimulate trophoblastic cell migration and provides evidence for the involvement of the PI3K/mTOR/p70 S6 kinase pathway in the JAR cells response. Because both OPN and TRAP are expressed in the uterus during early pregnancy, it is conceivable that extracellular phosphatases such as TRAP may modify OPN charge state and thus modulate cell migration. © 2005 Wiley-Liss, Inc. [source] Regulation of osteoclastogenesis and RANK expression by TGF-,1JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2001Tao Yan Abstract Transforming growth factor-, (TGF-,) has been shown to both inhibit and to stimulate bone resorption and osteoclastogenesis. This may be due, in part, to differential effects on bone marrow stromal cells that support osteoclastogenesis vs. direct effects on osteoclastic precursor cells. In the present study, we used the murine monocytic cell line, RAW 264.7, to define direct effects of TGF-, on pre-osteoclastic cells. In the presence of macrophage-colony stimulating factor (M-CSF) (20 ng/ml) and receptor activator of NF-,B ligand (RANK-L) (50 ng/ml), TGF-,1 (0.01,5 ng/ml) dose-dependently stimulated (by up to 120-fold) osteoclast formation (assessed by the presence of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells and expression of calcitonin and vitronectin receptors). In addition, TGF-,1 also increased steady state RANK mRNA levels in a time- (by up to 3.5-fold at 48 h) and dose-dependent manner (by up to 2.2-fold at 10 ng/ml). TGF-,1 induction of RANK mRNA levels was present both in undifferentiated RAW cells as well as in cells that had been induced to differentiate into osteoclasts by a 7-day treatment with M-CSF and RANK-L. Using a fluorescence-labeled RANK-L probe, we also demonstrated by flow cytometry that TGF-,1 resulted in a significant increase in the percentage of RANK+ RAW cells (P,<,0.05), as well as an increase in the fluorescence intensity per cell (P,<,0.05), the latter consistent with an increase in RANK protein expression per cell. These data thus indicate that TGF-, directly stimulates osteoclastic differentiation, and this is accompanied by increased RANK mRNA and protein expression. J. Cell. Biochem. 83: 320,325, 2001. © 2001 Wiley-Liss, Inc. [source] Platelet-rich plasma impairs osteoclast generation from human precursors of peripheral bloodJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2010Elisabetta Cenni Abstract Platelet-rich plasma is used to accelerate bone repair for the release of osteogenic growth factors from activated platelets. To date, the effects on osteoclasts have been only scarcely investigated, even though these cells are crucial for bone remodeling. The aim of this research was the evaluation of the effects of thrombin-activated platelets (PRP) on osteoclastogenesis from human blood precursors. We evaluated both the ability to influence osteoclast differentiation induced by the receptor activator of nuclear factor-kappaB ligand (RANKL), and the ability to induce osteoclast differentiation without RANKL. In both assays, the incubation with PRP supernatant at 10% did not significantly affect the formation of tartrate-resistant acid phosphatase (TRACP)-positive multinucleated cells that were able to form the F-actin ring. However, when PRP at 25 and 50% was added to the medium without RANKL, the generation of TRACP-positive multinucleated cells was inhibited. PRP, even at 10%, reduced the osteoclast-mediated bone collagen degradation, suggesting inhibition of osteoclast activation. Similarly, after incubation with PRP supernatant, calcitonin receptor mRNA was lower than the untreated samples. In conclusion, PRP at 10% interfered with the complete differentiation process of human osteoclast precursors. At higher concentration it impaired osteoclast formation also at an early stage of differentiation. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:792,797, 2010 [source] (-)-Epigallocatechin gallate induces apoptosis, via caspase activation, in osteoclasts differentiated from RAW 264.7 cellsJOURNAL OF PERIODONTAL RESEARCH, Issue 3 2007J.-H. Yun Background and Objective:, Alveolar bone resorption is a characteristic feature of periodontal diseases and involves removal of both the mineral and the organic constituents of the bone matrix, a process mainly carried out by multinucleated osteoclast cells. (-)-Epigallocatechin gallate, the main constituent of green tea polyphenols, has been reported to induce the apoptotic cell death of osteoclasts and to modulate caspase activation in various tumor cells. In the present study, we investigated the inhibitory effect of (-)-epigallocatechin gallate on osteoclast survival and examined if (-)-epigallocatechin gallate mediates osteoclast apoptosis via caspase activation. Material and Methods:, The effect of (-)-epigallocatechin gallate on osteoclast survival was examined by tartrate-resistant acid phosphatase (TRAP) staining in osteoclasts differentiated from RAW 264.7 cells. In addition, we evaluated the apoptosis of osteoclasts by (-)-epigallocatechin gallate using a DNA-fragmentation assay. Involvement of caspase in (-)-epigallocatechin gallate-mediated osteoclast apoptosis was evaluated by treatment with a general caspase inhibitor, Z-VAD-FMK. Moreover, the effect of (-)-epigallocatechin gallate on the activation of caspase-3 was assessed by a colorimetric activity assay and western blotting. Results:, (-)-Epigallocatechin gallate significantly inhibited, in a dose-dependent manner, the survival of osteoclasts differentiated from RAW 264.7 cells and induced the apoptosis of osteoclasts. Treatment with (-)-epigallocatechin gallate resulted in DNA fragmentation and induced the activation of caspase-3 in RAW 264.7 cell-derived osteoclasts. Additional treatment with Z-VAD-FMK suppressed these effects of (-)-epigallocatechin gallate. Conclusion:, From these findings, we could suggest that (-)-epigallocatechin gallate might prevent alveolar bone resorption by inhibiting osteoclast survival through the caspase-mediated apoptosis. [source] Inhibitory effects of green tea polyphenol (,)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclastsJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2004Jeong-Ho Yun Background:, Alveolar bone resorption is a characteristic feature of periodontal diseases and involves the removal of both the mineral and organic constituents of the bone matrix, which is caused by either multinucleated osteoclast cells or matrix metalloproteinases (MMPs). The gram-negative bacterium, Porphyromonas gingivalis has been reported to stimulate the activity and expression of several groups of MMPs, whereas (,)-epigallocatechin gallate (EGCG), the main constituent of green tea polyphenols, has been reported to have inhibitory effects on the activity and expression of MMPs. Objectives:, In the present study, we investigated the effects of the green tea polyphenol, EGCG, on the gene expression of osteoblast-derived MMP-2, -9 and -13, stimulated by P. gingivalis, and on the formation of osteoclasts. Methods:, The effect of EGCG on the gene expression of MMPs was examined by treating mouse calvarial primary osteoblastic cells with EGCG (20 µm) in the presence of sonicated P. gingivalis extracts. The transcription levels of MMP-2, -9 and -13 were assessed by reverse transcription-polymerase chain reaction (RT-PCR). The effect of EGCG on osteoclast formation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining in a co-culture system of mouse bone marrow cells and calvarial primary osteoblastic cells. Results:, Treatment with the sonicated P. gingivalis extracts stimulated the expression of MMP-9 mRNA and this effect was significantly reduced by EGCG, whereas the transcription levels of MMP-2 and MMP-13 were not affected by either the sonicated P. gingivalis extracts or EGCG. In addition, EGCG significantly inhibited osteoclast formation in the co-culture system at a concentration of 20 µm. Conclusions:, These findings suggest that EGCG may prevent the alveolar bone resorption that occurs in periodontal diseases by inhibiting the expression of MMP-9 in osteoblasts and the formation of osteoclasts. [source] Dental root resorption and repair: histology and histometry during physiological drift of rat molarsJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2003Ryusei Kimura Objective:, The process of dental root resorption and subsequent cementum regeneration has not been sufficiently elucidated. This study aimed to examine the process of the root resorption and cementum regeneration during physiological tooth drift using a rat model, and to evaluate this experimental model. Methods:, Distal roots in mandibular first molars and the surrounding periodontal tissues were investigated with light and electron microscopy. The light microscopic approach included histochemical and histometric analyses utilizing the tartrate-resistant acid phosphatase (TRAP) reaction. Results:, Root resorption was observed in the distal side of the roots and was most active in 5- to 6-week-old rats, and gradually decreased hereafter. An increase in the number of TRAP-positive mononuclear cells, which seemed to be odontoclast precursor cells, preceded the increase in the number of odontoclasts. Root resorption was transient, and was followed by the new formation of acellular extrinsic fiber cementum accompanied with only a slight inflammation, and therefore classified as external surface resorption. Preparation for new cementum started adjacent to the resorption areas when root resorption was most active. Conclusions:, The root resorption during drift in rats is transient and followed by acellular extrinsic fiber cementum regeneration. Cellular kinetics suggested that odontoclast precursor cells are supplied as mononuclear cells from vascular spaces. [source] Histological evaluation on bone regeneration of dental implant placement sites grafted with a self-setting ,-tricalcium phosphate cementMICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2008Masayoshi Nakadate Abstract This study aimed to evaluate the histological characteristics of the new bone formed at dental implant placement sites concomitantly grafted with a self-setting tricalcium phosphate cement (BIOPEX-R®). Standardized defects were created adjacent to the implants in maxillae of 4-week-old male Wistar rats, and were concomitantly filled with BIOPEX-R®. Osteogenesis was examined in two sites of extreme clinical relevance: (1) the BIOPEX-R®-grafted surface corresponding to the previous alveolar ridge (alveolar ridge area), and (2) the interface between the grafting material and implants (interface area). At the alveolar ridge area, many tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts had accumulated on the BIOPEX-R® surface and were shown to migrate toward the implant. After that, alkaline phosphatase (ALPase)-positive osteoblasts deposited new bone matrix, demonstrating their coupling with osteoclasts. On the other hand, the interface area showed several osteoclasts initially invading the narrow gap between the implant and graft material. Again, ALPase-positive osteoblasts were shown to couple with osteoclasts, having deposited new bone matrix after bone resorption. Transmission electron microscopic observations revealed direct contact between the implant and the new bone at the interface area, although few thin cells could still be identified. At both the alveolar ridge and the interface areas, newly formed bone resembled compact bone histologically. Also, concentrations of Ca, P, and Mg were much alike with those of the preexistent cortical bone. In summary, when dental implant placement and grafting with BIOPEX-R® are done concomitantly, the result is a new bone that resembles compact bone, an ideal achievement in reconstructive procedures for dental implantology. Microsc. Res. Tech., 2008. © 2007 Wiley-Liss, Inc. [source] Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorptionMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2003Takahisa Sasaki Abstract The differentiation and functions of osteoclasts (OC) are regulated by osteoblast-derived factors such as receptor activator of NFKB ligand (RANKL) that stimulates OC formation, and a novel secreted member of the TNF receptor superfamily, osteoprotegerin (OPG), that negatively regulates osteoclastogenesis. In examination of the preosteoclast (pOC) culture, pOCs formed without any additives expressed tartrate-resistant acid phosphatase (TRAP), but showed little resorptive activity. pOC treated with RANKL became TRAP-positive OC, which expressed intense vacuolar-type H+ -ATPase and exhibited prominent resorptive activity. Such effects of RANKL on pOC were completely inhibited by addition of OPG. OPG inhibited ruffled border formation in mature OC and reduced their resorptive activity, and also induced apoptosis of some OC. Although OPG administration significantly reduced trabecular bone loss in the femurs of ovariectomized (OVX) mice, the number of TRAP-positive OC in OPG-administered OVX mice was not significantly decreased. Rather, OPG administration caused the disappearance of ruffled borders and decreased H+ -ATPase expression in most OC. OPG deficiency causes severe osteoporosis. We also examined RANKL localization and OC induction in periodontal ligament (PDL) during experimental movement of incisors in OPG-deficient mice. Compared to wild-type OPG (+/+) littermates, after force application, TRAP-positive OC were markedly increased in the PDL and alveolar bone was severely destroyed in OPG-deficient mice. In both wild-type and OPG-deficient mice, RANKL expression in osteoblasts and fibroblasts became stronger by force application. These in vitro and in vivo studies suggest that RANKL and OPG are important regulators of not only the terminal differentiation of OC but also their resorptive function. To determine resorptive functions of OC, we further examined the effects of specific inhibitors of H+ -ATPase, bafilomycin A1, and lysosomal cysteine proteinases (cathepsins), E-64, on the ultrastructure, expression of these enzymes and resorptive functions of cultured OC. In bafilomycin A1-treated cultures, OC lacked ruffled borders, and H+ -ATPase expression and resorptive activity were significantly diminished. E-64 treatment did not affect the ultrastructure and the expression of enzyme molecules in OC, but significantly reduced resorption lacuna formation, by inhibition of cathepsin activity. Lastly, we examined the expression of H+ -ATPase, cathepsin K, and matrix metalloproteinase-9 in odontoclasts (OdC) during physiological root resorption in human deciduous teeth, and found that there were no differences in the expression of these molecules between OC and OdC. RANKL was also detected in stromal cells located on resorbing dentine surfaces. This suggests that there is a common mechanism in cellular resorption of mineralized tissues such as bone and teeth. Microsc. Res. Tech. 61:483,495, 2003. © 2003 Wiley-Liss, Inc. [source] Expression of receptor activator of nuclear factor-,B ligand by B cells in response to oral bacteriaMOLECULAR ORAL MICROBIOLOGY, Issue 3 2009X. Han Introduction:, We investigated receptor activator of nuclear factor-,B ligand (RANKL) expression by B lymphocytes during early and late aspects of the immune response to Aggregatibacter actinomycetemcomitans, a gram-negative, anaerobic bacterium associated with aggressive periodontal disease. Methods:, Expression of messenger RNA transcripts (tumor necrosis factor-,, Toll-like receptors 4 and 9, interleukins 4 and 10, and RANKL) involved in early (1-day) and late (10-day) responses in cultured rat splenocytes was examined by reverse transcription,polymerase chain reaction (RT-PCR). The immune cell distribution (T, B, and natural killer cells and macrophages) in cultured rat splenocytes and RANKL expression in B cells were determined by flow cytometric analyses. B-cell capacity for induction of osteoclast differentiation was evaluated by coculture with RAW 264.7 cells followed by a tartrate-resistant acid phosphatase (TRAP) activity assay. Results:, The expression levels of interleukins 4 and 10 in cultured cells were not changed in the presence of A. actinomycetemcomitans until cultured for 3 days, and peaked after 7 days. After culture for 10 days, the percentages of B and T cells, the overall RANKL messenger RNA transcripts, and the percentage of RANKL-expressing immunoglobulin G-positive cells were significantly increased in the presence of A. actinomycetemcomitans. These increases were considerably greater in cells isolated from A. actinomycetemcomitans -immunized animals than from non-immunized animals. RAW 264.7 cells demonstrated significantly increased TRAP activity when cocultured with B cells from A. actinomycetemcomitans -immunized animals. The addition of human osteoprotegerin-Fc to the culture significantly diminished such increases. Conclusion:, This study suggests that B-lymphocyte involvement in the immune response to A. actinomycetemcomitans through upregulation of RANKL expression potentially contribute to bone resorption in periodontal disease. [source] Protective action of aqueous black tea (Camellia sinensis) extract (BTE) against ovariectomy-induced oxidative stress of mononuclear cells and its associated progression of bone lossPHYTOTHERAPY RESEARCH, Issue 9 2009Asankur Sekhar Das Abstract The protective action of aqueous black tea extract (BTE) against ovariectomy-induced oxidative stress of mononuclear cells and its associated progression of bone loss was demonstrated in this study. Eighteen female adult 6-month-old Wistar albino rats were divided into three groups: sham-control (A), bilaterally ovariectomized (B) and bilaterally ovariectomized + BTE supplemented (C). Studies included the measurement of oxidative (nitric oxide, lipid peroxidation) and antioxidative (superoxide dismutase, catalase) markers, inflammatory cytokines (IL-6, TNF- ,), osteoclast differentiation factor (RANKL) and bone resorption markers (tartrate-resistant acid phosphatase and hydroxyproline). Also quantitative histomorphometry and histological studies were undertaken. The bone breaking force was measured. The results indicate that BTE was effective in preserving and restoring skeletal health by reducing the number of active osteoclasts. Such changes with BTE supplementation were steadily linked with the reduced oxidative stress of mononuclear cells, serum levels of bone resorbing cytokines, osteoclast differentiation factor and resorption markers. The results of the bone breaking force, histological and histomorphometric analyses further supported the hypothesis. This study suggests that BTE has both protective and restorative actions against ovariectomy-induced mononuclear cell oxidative stress and associated bone loss. Copyright © 2009 John Wiley & Sons, Ltd. [source] META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritisARTHRITIS & RHEUMATISM, Issue 6 2010Veera Reddy Konda Objective The multikinase inhibitor META060 has been shown to inhibit NF-,B activation and expression of markers of inflammation. This study was undertaken to investigate the effect of META060 on biomarkers associated with bone and cartilage degradation in vitro and its antiinflammatory efficacy in vivo in both acute and chronic inflammation models. Methods Glycogen synthase kinase 3, (GSK3,),dependent ,-catenin phosphorylation was evaluated in RAW 264.7 macrophages to assess kinase inhibition. The inhibition of osteoclastogenesis and tartrate-resistant acid phosphatase (TRAP) activity was evaluated in RANKL-treated RAW 264.7 cells. The inhibition of interleukin-1, (IL-1,),mediated markers of inflammation was analyzed in human rheumatoid arthritis synovial fibroblasts (RASFs). Mice with carrageenan-induced acute inflammation and collagen-induced arthritis (CIA) were used to assess efficacy. Results META060 inhibited the activity of kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], phosphatidylinositol 3-kinase [PI 3-kinase], and GSK3) associated with RA and inhibited ,-catenin phosphorylation. META060 inhibited osteoclastogenesis, as indicated by decreased transformation of RAW 264.7 cells to osteoclasts and reduced TRAP activity, and inhibited IL-1,,activated prostaglandin E2, matrix metalloproteinase 3, IL-6, IL-8, and monocyte chemotactic protein 1 in RASFs. In mice with acute inflammation, oral administration of META060 reduced paw swelling similar to the effect of aspirin. In mice with CIA, META060 significantly reduced the arthritis index and decreased bone, joint, and cartilage degradation. Serum IL-6 concentrations in these mice were inhibited in a dose-dependent manner. Conclusion Our findings indicate that META060 reduces swelling in a model of acute inflammation and inhibits bone and cartilage destruction in a model of chronic inflammation. Its efficacy is associated with the inhibition of multiple protein kinases, including Syk, Btk, PI 3-kinase, and GSK3. These results warrant further clinical testing of META060 for its therapeutic potential in the treatment of inflammatory diseases. [source] Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signalingARTHRITIS & RHEUMATISM, Issue 2 2010George D. Kalliolias Objective Interleukin-27 (IL-27) has stimulatory and regulatory immune functions and is expressed in rheumatoid arthritis (RA) synovium. This study was undertaken to investigate the effects of IL-27 on human osteoclastogenesis, to determine whether IL-27 can stimulate or attenuate the osteoclast-mediated bone resorption that is a hallmark of RA. Methods Osteoclasts were generated from blood-derived human CD14+ cells. The effects of IL-27 on osteoclast formation were evaluated by counting the number of tartrate-resistant acid phosphatase,positive multinucleated cells and measuring the expression of osteoclast-related genes. The induction of nuclear factor of activated T cells c1 (NFATc1) and the activation of signaling pathways downstream of RANK were measured by immunoblotting. The expression of key molecules implicated in osteoclastogenesis (NFATc1, RANK, costimulatory receptors, and immunoreceptor tyrosine,based activation motif,harboring adaptor proteins) was measured by real-time reverse transcription,polymerase chain reaction. Murine osteoclast precursors obtained from mouse bone marrow and synovial fluid macrophages derived from RA patients were also tested for their responsiveness to IL-27. Results IL-27 inhibited human osteoclastogenesis, suppressed the induction of NFATc1, down-regulated the expression of RANK and triggering receptor expressed on myeloid cells 2 (TREM-2), and inhibited RANKL-mediated activation of ERK, p38, and NF-,B in osteoclast precursors. Synovial fluid macrophages from RA patients were refractory to the effects of IL-27. In contrast to the findings in humans, IL-27 only moderately suppressed murine osteoclastogenesis, and this was likely attributable to low expression of the IL-27 receptor subunit WSX-1 on murine osteoclast precursors. Conclusion IL-27 inhibits human osteoclastogenesis by a direct mechanism that suppresses the responses of osteoclast precursors to RANKL. These findings suggest that, in addition to its well-known antiinflammatory effects, IL-27 plays a homeostatic role in restraining bone erosion. This homeostatic function is compromised under conditions of chronic inflammation such as in RA synovitis. [source] Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKLARTHRITIS & RHEUMATISM, Issue 5 2009Lorenz C. Hofbauer Objective RANKL has been implicated in the pathogenesis of glucocorticoid-induced osteoporosis. This study was undertaken to evaluate the efficacy of denosumab, a neutralizing monoclonal antibody against human RANKL (hRANKL), in a murine model of glucocorticoid-induced osteoporosis. Methods Eight-month-old male homozygous hRANKL-knockin mice expressing a chimeric RANKL protein with a humanized exon 5 received 2.1 mg/kg of prednisolone or placebo daily over 4 weeks via subcutaneous slow-release pellets and were additionally treated with phosphate buffered saline or denosumab (10 mg/kg subcutaneously twice weekly). Two groups of wild-type mice were also treated with either prednisolone or vehicle. Results The 4-week prednisolone treatment induced loss of vertebral and femoral volumetric bone mineral density in the hRANKL-knockin mice. Glucocorticoid-induced bone loss was associated with suppressed vertebral bone formation and increased bone resorption, as evidenced by increases in the number of tartrate-resistant acid phosphatase (TRAP),positive osteoclasts, TRAP-5b protein in bone extracts, serum levels of TRAP-5b, and urinary excretion of deoxypyridinoline. Denosumab prevented prednisolone-induced bone loss by a pronounced antiresorptive effect. Biomechanical compression tests of lumbar vertebrae revealed a detrimental effect of prednisolone on bone strength that was prevented by denosumab. Conclusion Our findings indicate that RANKL inhibition by denosumab prevents glucocorticoid-induced loss of bone mass and strength in hRANKL-knockin mice. [source] In vitro spontaneous osteoclastogenesis of human peripheral blood mononuclear cells is not crucially dependent on T lymphocytes,ARTHRITIS & RHEUMATISM, Issue 4 2009Bernard Vandooren Objective In vitro spontaneous osteoclastogenesis from peripheral blood mononuclear cells (PBMCs) is increased in diseases with excessive bone loss. The purpose of this study was to reassess the role of T lymphocytes in this process. Methods Fresh or cryopreserved PBMCs obtained from healthy subjects and from patients with rheumatoid arthritis, psoriatic arthritis, and non-psoriatic spondylarthritis were cultured at high density and stained for tartrate-resistant acid phosphatase (TRAP). Resorption of mineralized matrix was assessed by a dentin disc assay. CD14+ monocytes and CD3+ T cells were selected using magnetically labeled antibodies. Results Numerous multinucleated, TRAP+, dentin-resorbing osteoclasts developed spontaneously from fresh PBMCs from healthy individuals. This process was abrogated by T cell depletion and was restored by exogenous macrophage colony-stimulating factor (M-CSF) and RANKL, indicating the important role of T cells in spontaneous osteoclastogenesis in vitro. Using physiologic freezing and thawing as a model for the activation of PBMCs, spontaneous osteoclastogenesis was significantly increased in cryopreserved versus fresh cells. Under these conditions, spontaneous osteoclastogenesis was not dependent on T lymphocytes, since it was not influenced by T cell depletion and persisted in purified CD14+ cell cultures supplemented with M-CSF and RANKL. In contrast to studies with fresh PBMCs, spontaneous osteoclastogenesis under these conditions did not appear to be clearly different between healthy subjects and patients with arthritis. Conclusion Spontaneous osteoclastogenesis in vitro is dependent on T lymphocytes or on the direct activation of monocytic cells, depending on the test conditions. This variability warrants better validation of the relevance of this functional test for in vivo osteoclastogenesis. [source] Development of an ex vivo cellular model of rheumatoid arthritis: Critical role of cd14-positive monocyte/macrophages in the development of pannus tissueARTHRITIS & RHEUMATISM, Issue 9 2007Toshiko Nozaki Objective To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Methods Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Results Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase,positive multinucleated cells. On calcium phosphate,coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor ,, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. Conclusion These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs. [source] Successful treatment of multicentric reticulohistiocytosis with alendronate: Evidence for a direct effect of bisphosphonate on histiocytesARTHRITIS & RHEUMATISM, Issue 12 2003Hitoshi Goto We describe the case of a 44-year-old Japanese woman with severe nodular erythematous skin lesions and arthritis mutilans who was admitted for further treatment of multicentric reticulohistiocytosis. Skin and synovial biopsies showed heavy infiltration with tartrate-resistant acid phosphatase,positive histiocytes and multinucleated giant cells. Immunohistochemical analysis showed that some of the mononuclear cells in the skin were positive for RANKL. After 1 month of Alendronate, an aminobisphosphonate, given at a dosage of 10 mg once a week intravenously for the first 6 weeks and then once a month thereafter, the arthritis and skin nodules improved, and the remission has continued for more than 2 years. The findings in this patient suggest that osteoclast-like multinucleated giant cells differentiate locally in the skin from infiltrating histiocytes with the help of RANKL-positive stromal cells and that alendronate acts directly on cells of monocyte/macrophage lineage in humans. Thus, alendronate should be added to the list of drugs for the treatment of multicentric reticulohistiocytosis. [source] Water extract of Cordyceps sinensis (WECS) inhibits the RANKL-induced osteoclast differentiationBIOFACTORS, Issue 2 2007Yoko Mizuha Abstract It has been reported that Cordyceps sinensis, a traditional Chinese medicine, has various pharmacological effects. The aim of this study was to clarify the effect of water extract of Cordyceps sinensis (WECS) on osteoclast differentiation in vitro. In mouse bone marrow cells and monocyte/macrophage cell line RAW264.7, WECS dose-dependently inhibited the receptor activator of nuclear factor kappa B (NF-,B) ligand (RANKL)-induced osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) staining. In fact, cytotoxic effect was not observed in the RAW264.7 cells treated with WECS. Moreover, the mRNA expression of osteoclast related genes (calcitonin receptor, cathepsin K, matrix metalloprotease 9 and nuclear factor of activated T cells c1) was also inhibited by WECS. Investigation of inhibitory mechanism by using electrophoretic mobility shift assay (EMSA) and Western blot analysis revealed that WECS inhibited the activation of NF-,B through the prevention of I,B, phosphorylation. In conclusion, the present results demonstrate for the first time that WECS is a potent inhibitor of the RANKL-induced osteoclast differentiation through a mechanism involving the NF-,B pathway. [source] Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor- ,B ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myelomaBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2006Evangelos Terpos Summary The effect of bortezomib on bone remodelling was evaluated in 34 relapsed myeloma patients. At baseline, patients had increased serum concentrations of dickkopf-1 (DKK-1), soluble receptor activator of nuclear factor- ,B ligand (sRANKL), sRANKL/osteoprotegerin ratio, C-telopeptide of type-I collagen (CTX) and tartrate-resistant acid phosphatase isoform-5b (TRACP-5b); bone-alkaline phosphatase and osteocalcin were reduced. Serum DKK-1 correlated with CTX and severe bone disease. Bortezomib administration significantly reduced serum DKK-1, sRANKL, CTX, and TRACP-5b after four cycles, and dramatically increased bone-alkaline phosphatase and osteocalcin, irrespective of treatment response. This is the first study showing that bortezomib reduces DKK-1 and RANKL serum levels, leading to the normalisation of bone remodelling in relapsed myeloma. [source] Human osteoclast formation and activity on an equine spongy bone substituteCLINICAL ORAL IMPLANTS RESEARCH, Issue 1 2009Vittoria Perrotti Abstract Objectives: The aim of the present study was to evaluate the in vitro formation and activity of human osteoclasts (OCLs) generated on a new type of xenograft for bone substitution, an equine spongy bone. Material and methods: Peripheral blood mononuclear cells from healthy volunteers were used to generate OCLs in vitro in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-,B ligand (RANKL) on bovine bone slices (positive control) and equine spongy bone. Morphological and biochemical methods were used to assess OCLs formation and activity. Results: Cells generated after 21 days of culture on equine spongy bone showed similar morphology to those on the positive control and displayed typical OCL markers and features, indicating that this material supported OCL formation. Moreover, these cells were functionally active on equine spongy bone with statistically significant differences compared with the control in the release of tartrate-resistant acid phosphatase (TRAcP5b) at days 14 and 21 of culture. With regard to the resorption, on equine bone, OCLs formed smaller discontinuous island-like lacunae rather than the typical lobulated, tracking resorption lacunae observed on the control. Conclusions: This study enables clinicians to tailor the usage of equine spongy bone and presents a model, which can be applied to the preclinical assessment of bone substitute material's resorbability and resorption rates. [source] Tissue response to titanium implantation in the rat maxilla, with special reference to the effects of surface conditions on bone formationCLINICAL ORAL IMPLANTS RESEARCH, Issue 6 2003Masaki Shirakura Abstract: Tissue responses to titanium implantation with two different surface conditions in our established implantation model in rat maxillae were investigated by light and transmission electron microscopy and by histochemistry for tartrate-resistant acid phosphatase (TRAPase) activity. Here we used two types of implants with different surface qualities: titanium implants sandblasted with Al2O3 (SA-group) and implants coated with hydroxyapatite (HA-group). In both groups, bone formation had begun by 5 days postimplantation when the inflammatory reaction had almost disappeared in the prepared bone cavity. In the SA-group, however, the bone formation process in the bone cavity was almost identical to that shown in our previous report using smooth surfaced implants (Futami et al. 2000): new bone formation, which occurred from the pre-existing bone toward the implant, was preceded by active bone resorption in the lateral area with a narrow gap, but not so in the base area with a wide gap. In the HA-group, direct bone formation from the implant toward the pre-existing bone was recognizable in both lateral and base areas. Many TRAPase-reactive cells were found near the implant surface. On the pre-existing bone, new bone formation occurred with bone resorption by typical osteoclasts. Osseointegration around the implants was achieved by postoperative day 28 in both SA- and HA-groups except for the lateral area, where the implant had been installed close to the cavity margin. These findings indicate that ossification around the titanium implants progresses in different patterns, probably dependent on surface properties and quality. Résumé Les réponses tissulaires à l'implantation du titane avec deux conditions de surfaces différentes dans le maxillaire du rat ont étéétudiées par microscopie optique et électronique à transmission et par histochimie pour l'activité de l'acide phosphatase résistant au tartrate (TRAPase). Deux types d'implants avec différentes qualité de surface ont été utilisés : des implants en titane sablés par du AL2O3 (groupe SA) et des implants couverts par de l'hydroxyapatite (groupe HA). Dans les deux groupes la formation osseuse avait démarré cinq jours après l'implantation, lorsque la réaction inflammatoire avait presque disparue de la cavité osseuse préparée. Cependant, dans le groupe SA le processus de formation osseuse de la cavité osseuse était quasi identique à celle montrée dans un rapport précédent utilisant des implants à surface lisse (Futami et al., 2000) : la néoformation osseuse qui démarre de l'os préexistant vers l'implant, était précédée par une résorption osseuse active dans l'aire latérale avec une brèche étroite, mais pas dans l'aire de base avec un espace large. Dans le groupe HA, une formation osseuse directe de l'implant vers l'os préexistant était reconnaissable tant dans les aires latérales qu'au niveau de la base. Beaucoup de cellules réactives au TRAPase ont été trouvées près de la surface de l'implant. Sur l'os préexistant une néoformation osseuse est apparue avec une résorption osseuse par des ostéoclastes typiques. L'ostéoïntégration autour des implants a été achevée au jour 28 après l'opération tant dans le groupe SA que HA excepté pour l'aire latérale où l'implant avait été inséré près du rebord de la cavité. Ces découvertes indiquent que l'ossification autour des implants en titane progresse de manière différente dépendant probablement de la qualité et des propriétés de surface. Zusammenfassung Die Gewebsantwort auf implantiertes Titan in einem Rattenoberkiefer. Spezielles Augenmerk auf die Einflüsse der Oberflächenbeschaffenheit auf die Knochenbildung. An unserem etablierten Implantationsmodell am Rattenoberkiefer wurde die Gewebsantwort nach der Titanimplantation von zwei Prüfkörpern mit verschiedener Oberfläche mit Hilfe der Licht- und Transmissionselektronenmikroskopie, sowie mittels Histochemie zum Aktivitätsnachweis der tartratresitenten sauren Phosphatase (TRAPase) untersucht. Wir benutzten hier zwei Implantattypen mit verschiedenen Oberflächen: Mit Al2O3 sandgestrahlte Titanimplantate (SA-Gruppe) und mit Hydroxylapatit beschichtete Implantate (HA-Gruppe). Bei beiden Gruppen begann die Knochenbildung 5 Tage nach der Implantation, sobald die Entzündungsreaktion im präparierten Knochenbett am verschwinden war. In der SA-Gruppe aber, zeigte sich im präparierten Implantatbett ein beinahe gleicher Knochenbildungsvorgang, wie in unseren früheren Berichten für glatte Implantatoberflächen beschrieben (Futami et al., 2000): Die vom bereits vorhandenen Knochen ausgehende Knochenneubildung gegen das Implantat hin erfolgte erst nach einer aktiven Knochenresorption im lateralen Bereich. Es entstand eine minime Spalte zwischen Knochen und Implantat, währenddem im apicalen Bereich eine breitere Spalte entstand. In der HA-Gruppe konnte man sowohl im lateralen, wie auch im apicalen Bereich eine direkt vom Implantat ausgehende Knochenbildung in Richtung des vorhandenen Knochens feststellen. In der Nähe der Implantatoberfläche fand man viele TRAPase-reaktive Zellen. Beim vorhandenen Knochen erfolgte die Knochenneubildung gleichzeitig mit der Knochenresorption durch typische Osteoklasten. Die Osseointegration rund um die Implantate herum erreichte man, ausser im lateralen Bereich gegen den Rand des Implantatbettes hin, in der SA-und der HA-Gruppe am 28igsten postoperativen Tag. Diese Ergebnisse zeigen, dass die Ossifikation um Titanimplantate in verschiedenen Mustern abläuft, wahrscheindlich in Abhängigkeit von der Oberflächeneigenschaft und -qualität. Resumen Se investigó las respuestas tisulares a la implantación con titanio con dos condiciones diferentes de superficie en nuestro modelo establecido de implantación en el maxilar de la rata por medio de microscopía óptica y electrónica de transmisión y por medio de histoquímica para la actividad de fosfatasa alcalina tartrato resistente (TRAPase). Hemos usado aquí dos tipos de implantes con diferentes calidades de superficies: Implantes de titanio pulverizados con Al2O3 (grupo-SA), e implantes cubiertos con hidroxiapatita (grupo-HA). En ambos grupos la formación de hueso comenzó a los 5 días de la implantación cuando la reacción inflamatoria hubo casi desaparecido en la cavidad ósea preparada. De todos modos, en el grupo SA, el proceso de formación de hueso en la cavidad ósea fue casi idéntico a aquel mostrado en nuestro informe previo usando implantes de superficies lisas (Futami et al., 2000): neoformación de hueso, que tuvo lugar desde el hueso preexistente hacia el implante, siendo precedida por reabsorción ósea activa en el área lateral con un espacio estrecho, pero no así en el área basal con espacio ancho. Se encontraron muchas células TRAPase reactivas cerca de la superficie del implante. En el hueso preexistente, la neoformación ósea tuvo lugar con reabsorción ósea con osteoclastos típicos. La osteointegración alrededor de los implantes se logró al día 28 tras la operación en ambos grupos SA y HA excepto para el área lateral, donde el implante se instaló cerca del margen de la cavidad. Estos hallazgos indican que la osificación alrededor de los implantes de titanio progresa con patrones diferentes, probablemente dependiendo de las propiedades y las calidades de la superficie. [source] |