Target Neurons (target + neuron)

Distribution by Scientific Domains


Selected Abstracts


Entorhinal Cortex Lesion in the Mouse Induces Transsynaptic Death of Perforant Path Target Neurons

BRAIN PATHOLOGY, Issue 3 2004
Adam D. Kovac
Entorhinal cortex lesion (ECL) is a well described model of anterograde axonal degeneration, subsequent sprouting and reactive synaptogenesis in the hippocampus. Here, we show that such lesions induce transsynaptic degeneration of the target cells of the lesions pathway in the dentate gyrus. Peaking between 24 and 36 hours postlesion, dying neurons were labeled with DeOlmos silver-staining and antisera against activated caspase 3 (CCP32), a downstream inductor of programmed cell death. Within caspase 3-positive neurons, fragmented nuclei were co-localized using Hoechst 33342 staining. Chromatin condensation and nuclear fragmentation were also evident in semithin sections and at the ultrastructural level, where virtually all caspase 3-positive neurons showed these hallmarks of apoptosis. There is a well-described upregulation of the apoptosis-inducing CD95/L system within the CNS after trauma, yet a comparison of caspase 3-staining patterns between CD95 (lpr)- and CD95L (gld)-deficient with non-deficient mice (C57/bl6) provided no evidence for CD95L-mediated neuronal cell death in this setting. However, inhibition of NMD A receptors with MK-801 completely suppressed caspase 3 activation, pointing to glutamate neurotoxicity as the upstream inducer of the observed cell death. Thus, these data show that axonal injury in the CNS does not only damage the axotomized neurons themselves, but can also lethally affect their target cells, apparently by activating glutamate-mediated intracellular pathways of programmed cell death. [source]


Afferent,target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005
Ann M. Lohof
Abstract We have used a model of postlesional reinnervation to observe the interactions between synaptic partners during neosynaptogenesis to determine how the developmental states of the pre- and postsynaptic cells influence circuit maturation. After unilateral transection of the neonatal rat olivocerebellar pathway (pedunculotomy), axons from the remaining ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF) terminal arbors on Purkinje cells (PCs) at a later stage of development than normal. However, the significance of delayed CF-PC interactions on subsequent circuit maturation remains poorly defined. To examine this question, we recorded CF-induced currents in PCs and analysed PC morphology during the first two postnatal weeks in control animals and following left unilateral inferior cerebellar pedunculotomy on postnatal day (P)3. Our results show that transcommissural olivary axons multiply-reinnervate PCs in the denervated hemisphere over 4 days following pedunculotomy. Each PC received fewer CFs than did age-matched controls and the maximal multi-reinnervation was reached on P7, 2 days later than in controls. Consequently, the onset of CF synapse elimination in reinnervated PCs was delayed, but then proceeded in parallel with controls so that all PCs were monoinnervated by P15. Furthermore, reinnervated PCs had delayed dendritic maturation and subsequent dendritic abnormalities consistent with the role of CF innervation in PC dendritic growth. Thus, within the olivocerebellar system, our data suggest that target neurons depend upon sufficient afferent investment arriving at the correct time for their normal development, and maturation of the target neuron regulates afferent selection and therefore circuit maturation. [source]


Target-dependent modulation of neurotransmitter release in cultured Helix neurons involves adhesion molecules

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2001
Mirella Ghirardi
Abstract The secretory capabilities of the serotonergic neuron C1 of cerebral ganglion of Helix pomatia were markedly reduced when it was cultured in contact with the wrong target neuron, C3. When the neuron B2, one of its physiological targets, was micromanipulated within the network made of intermingled neurites originating from the axonal stumps of both C1 and C3 neurons, C1 increased the amount of the evoked transmitter release, which, after 30 min, reached the level observed when cocultured with the appropriate target. The removal of the appropriate target brought C1 back to the low release condition. By imaging C1 neurites with a fluorescent dye, morphological changes involving a local increase in the number of varicosities could be observed as early as 30 min after contact with the appropriate target. Monoclonal antibody 4E8 against apCAM, a family of Aplysia adhesion molecules, recognizes apCAM-like molecules of the Helix central nervous system on immunocytochemistry and Western blot analysis. The contact with the appropriate target previously incubated in a 4E8 solution, which did not interfere with its capacity to respond to serotonin, failed to increase the transmitter release of C1 cocultured in the presence of the wrong target, C3. These results suggest that the apCAM-like antigens bound to the target membrane participate in the molecular processes responsible for the assembly of the "release machinery" present in the functional presynaptic structure. J. Neurosci. Res. 65:111,120, 2001. © 2001 Wiley-Liss, Inc. [source]


Afferent,target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005
Ann M. Lohof
Abstract We have used a model of postlesional reinnervation to observe the interactions between synaptic partners during neosynaptogenesis to determine how the developmental states of the pre- and postsynaptic cells influence circuit maturation. After unilateral transection of the neonatal rat olivocerebellar pathway (pedunculotomy), axons from the remaining ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF) terminal arbors on Purkinje cells (PCs) at a later stage of development than normal. However, the significance of delayed CF-PC interactions on subsequent circuit maturation remains poorly defined. To examine this question, we recorded CF-induced currents in PCs and analysed PC morphology during the first two postnatal weeks in control animals and following left unilateral inferior cerebellar pedunculotomy on postnatal day (P)3. Our results show that transcommissural olivary axons multiply-reinnervate PCs in the denervated hemisphere over 4 days following pedunculotomy. Each PC received fewer CFs than did age-matched controls and the maximal multi-reinnervation was reached on P7, 2 days later than in controls. Consequently, the onset of CF synapse elimination in reinnervated PCs was delayed, but then proceeded in parallel with controls so that all PCs were monoinnervated by P15. Furthermore, reinnervated PCs had delayed dendritic maturation and subsequent dendritic abnormalities consistent with the role of CF innervation in PC dendritic growth. Thus, within the olivocerebellar system, our data suggest that target neurons depend upon sufficient afferent investment arriving at the correct time for their normal development, and maturation of the target neuron regulates afferent selection and therefore circuit maturation. [source]


Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
Elisabetta Vaudano
Abstract This study was designed to determine whether induction and phosphorylation of the transcription factor c-Jun is associated with lesion-induced death of dopaminergic neurons of the substantia nigra pars compacta, and if this cellular response is modulated by glial-cell-line-derived neurotrophic factor. In adult rats, delayed dopaminergic neuron cell death induced by intrastriatal 6-hydroxydopamine injection led to a marked increase in the number of both c-Jun- and phosphorylated c-Jun-immunoreactive nuclei in the substantia nigra pars compacta. The response was maximal before any significant loss of nigral neurons could be detected (on day 7 post lesion) and was confined to the dopaminergic neurons. Similarly, 6-hydroxydopamine lesion of the striatal dopaminergic terminals or excitotoxic lesion of the striatal target neurons in neonatal rats resulted in an increased number of c-Jun- and phosphorylated c-Jun-immunoreactive nigral nuclei that preceded the loss of nigral dopaminergic neurons. By contrast, after an excitotoxic lesion of the striatal target neurons in the adult rat, resulting in atrophy but not cell death of the nigral dopaminergic neurons, no upregulation of either c-Jun or phosphorylated c-Jun was found. A single injection of 10 µg of glial-cell-line-derived-neurotrophic factor given at day 3 after the intrastriatal 6-hydroxydopamine lesion reduced the number of c-Jun- and phosphorylated c-Jun-immunoreactive nuclei in the substantia nigra and protected the dopaminergic neurons from the ensuing cell death. We conclude that c-Jun induction and phosphorylation may be involved in the cellular events leading to death of nigral dopaminergic neurons in vivo and that this response can be modulated by glial-cell-line-derived-neurotrophic factor. [source]


Latest view on the mechanism of action of deep brain stimulation,

MOVEMENT DISORDERS, Issue 15 2008
Constance Hammond PhD
Abstract How does deep brain stimulation (DBS) applied at high frequency (100 Hz and above, HFS) in diverse points of cortico-basal ganglia thalamo-cortical loops alleviate symptoms of neurological disorders such as Parkinson's disease, dystonia, and obsessive compulsive disorders? Do the effects of HFS stem solely or even largely from local effects on the stimulated brain structure or are they also mediated by actions of HFS on distal structures? Indeed, HFS as an extracellular stimulation is expected to activate subsets of both afferent and efferent axons, leading to antidromic spikes that collide with ongoing spontaneous ones and orthodromic spikes that evoke synaptic responses in target neurons. The present review suggests that HFS interfere with spontaneous pathological patterns by introducing a regular activity in several nodal points of the network. Therefore, the best site of implantation of the HFS electrode may be in a region where the HFS-driven activity spreads to most of the identified, dysrhythmic, neuronal populations without causing additional side effects. This should help tackling the most difficult issue namely, how does the regular HFS-driven activity that dampens the spontaneous pathological one, restore neuronal processing along cortico-basal ganglia-thalamo-cortical loops? © 2008 Movement Disorder Society [source]