Barley Plants (barley + plant)

Distribution by Scientific Domains


Selected Abstracts


Protochlorophyllide-independent import of two NADPH:Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids

PHYSIOLOGIA PLANTARUM, Issue 3 2000
Clas Dahlin
The enzyme catalysing the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), NADPH:Pchlide oxidoreductase (POR; EC 1.6.99.1), is a nuclear-encoded protein that is post-translationally imported to the plastid. In barley and Arabidopsis thaliana, the reduction of Pchlide is controlled by two different PORs, PORA and PORB. To characterise the possible Pchlide dependency for the import reaction, radiolabelled precursor proteins of barley PORA and PORB (pPORA and pPORB, respectively) were used for in vitro assays with isolated plastids of barley and pea with different contents of Pchlide. To obtain plastids with different endogenous levels of Pchlide, several methods were used. Barley plants were grown in darkness or in greenhouse conditions for 6 days. Alternatively, greenhouse-grown pea plants were incubated for 4 days in darkness before plastid isolation, or chloroplasts isolated from greenhouse-grown plants were incubated with , -aminolevulinic acid (ALA), an early precursor in the Chl biosynthesis resulting in elevated Pchlide contents in the plastids. Both barley pPORA and pPORB were effectively imported into barley and pea chloroplasts isolated from the differentially treated plants, including those isolated from greenhouse-grown plants. The absence or presence of Pchlide did not significantly affect the import capacity of barley pPORA or pPORB. Assays performed on stroma-enriched fractions from chloroplasts and etioplasts of barley indicated that no post-import degradation of the proteins occurred in the stroma, irrespective of whether the incubation was performed in darkness or in light. [source]


Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on roots

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2003
N. Carol Casavant
Summary We constructed and characterized a plasmid-based genetic system that reports the expression of a toluene-responsive promoter (PtbuA1) by effecting an irreversible, heritable change in the biosensor cell. Expression of the reporter gene gfp is strongly repressed in the absence of expression from the PtbuA1 promoter, and high level gfp expression in the original cell and its progeny is mediated by the site-specific recombination machinery of bacteriophage P22 to initiate removal of a repressor cassette. The reporter plasmid pTolLHB was functional in two soil saprophytes, Pseudomonas fluorescens A506 and Enterobacter cloacae JL1157, with the efficiency and sensitivity to low toluene concentrations being optimal in P. fluorescens A506. In culture, 80,100% of the A506 (pTolLHB) population expressed gfp following exposure to 0.2 µm toluene for one to three hours. Compared to the response of A506 containing a plasmid-borne PtbuA1 - gfp fusion, the recombination-based biosensor was more sensitive at detecting low toluene and trichloroethylene concentrations. An A506 (pTolLHB) inoculum, which had a background of 2.5% of the cells expressing gfp, was introduced onto barley roots in soil microcosms. If toluene was introduced into the microcosms, after 24 h, 72% of the A506 (pTolLHB) cells recovered from roots expressed gfp, indicating bioavailable toluene to rhizosphere bacteria. When toluene was not introduced, 16.5% of the A506 (pTolLHB) cells recovered from the roots expressed gfp, indicating that natural inducers of the PtbuA1 promoter were present in the barley rhizosphere. When introduced into rhizotrons containing barley plants and toluene vapours, the biosensor allowed localization of the availability of toluene along the seminal roots. In rhizotrons that were not exposed to toluene vapours, the biosensor exhibited high PtbuA1 -promoter activity in distinct regions along the seminal roots, indicating spatial heterogeneity plant- or rhizosphere microbial community-derived inducers of the PtbuA1 promoter. This recombination-based toluene biosensor thus was useful in identifying bacterial exposure to transient or low levels of toluene, or related compounds, directly in the environment. [source]


Soil properties, but not plant nutrients (N, P, K) interact with chemically induced resistance against powdery mildew in barley

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2003
Joachim Wiese
Abstract Chemically induced resistance is a promising method of plant protection against diseases, which can be triggered by systemically acting chemical inducers such as BTH (benzo(1, 2, 3)thiadiazole-carbothioic-acid-S-methylester). BTH is commercially distributed as a 50,% formulation, called Bion®. The uncertain success of Bion® application in controlling infection by powdery mildew is a major obstacle in using induced resistance for plant protection in agriculture. This study aimed to investigate the effect of soil properties, selected macronutrients (N, P, and K), and addition of organic matter on induced resistance and to identify possible factors responsible for the high variability of BTH effect under field conditions. A pot experiment under open-air conditions was set up using the pathosystem Hordeum vulgare cv. Ingrid / Blumeria graminis f. sp. hordei race A6. The different soils strongly affected the resistance of barley plants against powdery mildew after BTH treatment. The infection of barley by powdery mildew was lower than on all other soils when grown on an acid forest soil which was limed up to pH 4.9, even after BTH treatment. A reproducible induction of pathogen resistance by BTH was shown only on a mineral soil (Kleinlinden) with a negligible C content. Application of N, P, and K did not consistently affect the induction of resistance by BTH. The addition of green manure and compost led to an enhanced variability of resistance induction on the soil "Kleinlinden". Possible effects of soil microflora on resistance induction are discussed. Bodeneigenschaften, aber nicht Pflanzennährstoffe (N, P, K) interagieren mit der chemisch induzierten Resistenz gegen Gerstenmehltau in Gerste Chemisch induzierte Resistenz ist eine viel versprechende Methode im Pflanzenschutz, welche durch systemisch wirkende Substanzen wie BTH (Benzo(1, 2, 3)-thiadiazolcarbothion-Säure- S -Methylester) induziert werden kann. BTH ist die wirksame Komponente des kommerziell erhältlichen Produkts Bion®. Allerdings ist die Wirksicherheit von Bion® im Feld gering, wodurch die Anwendung des Produkts im Pflanzenschutz eingeschränkt ist. Das Ziel der vorliegenden Arbeit war es, den Einfluss verschiedener Böden, ausgewählter Makronährstoffe (N, P und K) und des Zusatzes von organischem Material zum Boden auf die induzierte Resistenz zu untersuchen und Faktoren zu identifizieren, die für die unsichere BTH-Wirkung im Feld verantwortlich sind. Dafür wurden Gefäßexperimente unter freilandähnlichen Bedingungen durchgeführt. In diesen wurde das Pathosystem Hordeum vulgare cv. Ingrid / Blumeria graminis f. sp. hordei Stamm A6 verwendet. Es wurde ein starker Einfluss des Bodens auf die Resistenz der Gerste gegen Gerstenmehltau nach BTH-Behandlung ermittelt. Die Mehltauinfektion von Gerste, welche auf einem sauren Waldboden kultiviert wurde, der auf einen pH-Wert von 4, 9 aufgekalkt worden war, war niedriger als auf allen anderen Böden, selbst nach BTH-Behandlung. Eine reproduzierbare Induktion der Pathogenresistenz durch BTH konnte nur auf einem Mineralboden mit vernachlässigbarem C-Gehalt gezeigt werden. Die Ernährung mit N, P und K hatte keinen konsistenten Einfluss auf die Resistenzinduktion mittels BTH. Der Zusatz von Kompost und Gründünger zum Boden ,Kleinlinden" erhöhte die Variabilität der Resistenzinduktion. Der mögliche Einfluss der Bodenmikroflora auf die Resistenzinduktion wird diskutiert. [source]


Short episodes of water stress increase barley root resistance to radial shrinkage in a dehydrating environment

PHYSIOLOGIA PLANTARUM, Issue 4 2006
Jorge Hugo Lemcoff
Although plant shoots can be ,hardened' by abiotic stresses, little is known about such changes in roots. In order to investigate possible induction of root-hardening in response to short water-stress episodes, barley seedlings (Hordeum vulgare L) hydroponically grown under a controlled environment were moderately water-stressed by addition of a non-penetrating osmoticum, polyethylene glycol (PEG) 6000 at ,0.4 MPa water potential, to the aerated nutrient solution. Seedlings were then hydrated in dilute nutrient solution without PEG before excision and assay of the seminal roots. Previous water stress treatments for 72 h, 12 h, or even 6 h induced an apparent root-hardening process. Thus, root radial shrinkage during subsequent exposure to strongly dehydrating conditions was remarkably decreased. The root hardening was related to biophysical adjustments: turgor-pressure increased while osmotic potential decreased from ,0.45 ± 0.02 MPa to ,0.60 ± 0.02 MPa. Moreover, the maximum bulk volumetric modulus of elasticity, ?max determined by pressure,volume analysis, increased from 2.1 ± 0.4 MPa to 3.7 ± 0.4 MPa, i.e. root elasticity was decreased. Root hardening in response to episodes of water stress may have ecological significance for barley plants in regions where intermittent drought episodes are frequent. [source]


The barley mutant emr2 shows enhanced resistance against several fungal leaf pathogens

PLANT BREEDING, Issue 2 2009
M. Jansen
Abstract Homozygous mlo -barley plants are resistant to barley powdery mildew but hypersusceptible to the rice blast fungus Magnaporthe oryzae. A mutational analysis was performed in the barley back-cross line BCIngrid mlo5 which led to the identification of two mutants with enhanced capacity to resist infections by M. oryzae, referred to as enhanced M. oryzae resistance mutants emr1 and emr2. Here, we report on the characterization of emr2 mutant plants which not only show an almost complete reduction in disease severity after inoculation with M. oryzae but are also resistant to the necrotrophic fungi Drechslera teres and Rhynchosporium secalis. Histological analysis revealed that resistance to M. oryzae was based mainly on the formation of papillae at sites of attempted penetration into epidermal cells. There was no progression of fungal growth into the mesophyll. Additionally, because of the presence of the mlo -allele, emr2 -plants retained resistance to powdery mildew. The emr2 -conditioned broad spectrum resistance was inherited as in a recessive manner. Monitoring of PR -gene expression and enzymatic activity of peroxidases revealed a constitutively activated defence in emr2. [source]


Jasmonic acid treatment to part of the root system is consistent with simulated leaf herbivory, diverting recently assimilated carbon towards untreated roots within an hour

PLANT CELL & ENVIRONMENT, Issue 9 2008
GUNNAR JAKOB HENKES
ABSTRACT It is known that shoot application of jasmonic acid (JA) leads to an increased carbon export from leaves to stem and roots, and that root treatment with JA inhibits root growth. Using the radioisotope 11C, we measured JA effects on carbon partitioning in sterile, split-root, barley plants. JA applied to one root half reduced carbon partitioning to the JA-treated tissue within minutes, whereas the untreated side showed a corresponding , but slower , increase. This response was not observed when instead of applying JA, the sink strength of one root half was reduced by cooling it: there was no enhanced partitioning to the untreated roots. The slower response in the JA-untreated roots, and the difference between the effect of JA and temperature, suggest that root JA treatment caused transduction of a signal from the treated roots to the shoot, leading to an increase in carbon allocation from the leaves to the untreated root tissue, as was indeed observed 10 min after the shoot application of JA. This supports the hypothesis that the response of some plant species to both leaf and root herbivores may be the diversion of resources to safer locations. [source]


Long-term changes of aphid vectors of Barley yellow dwarf viruses in north-eastern Italy (Friuli-Venezia Giulia)

ANNALS OF APPLIED BIOLOGY, Issue 1 2009
P.G. Coceano
Abstract Migrations of aphid vectors of Barley yellow dwarf viruses (BYDV) were monitored using a Rothamsted Insect Survey suction trap in Friuli-Venezia Giulia (north-eastern Italy). Catches from 1983 to 2002 were studied for trends, correlations of total catches of each year with those of previous years, correlations between the autumn and the spring + summer catches of the same year and between spring + summer catches of one year with catches of the previous autumn. Infectivity of autumn alates was studied using biological tests, and infectivity indexes were calculated for all vector species and for Rhopalosiphum padi alone. Colonisation of barley and proportion of infected plants were checked in a field close to the suction trap from 1992 to 2002 and related to trap catches. Catches were also correlated to acreage dedicated to cereal and fodder crops in the region. During the 20 years, 15 BYDV vector species were caught in the trap, but only five species were found consistently colonising barley plants during autumn. R. padi was the most numerous species in catches, while Sitobion avenae was the predominant colonising species in the barley field. Relatively to R. padi, S. avenae colonies were about six times more numerous than expected from catches. The yearly abundance of catches of most species did not change significantly during the 20 years, with a few exceptions, significantly correlated to changes in the acreage dedicated to cereal and fodder crops. There was a significant decrease of the autumn catches of both R. padi and the total of BYDV vectors. [source]