Home About us Contact | |||
Table Tests (table + test)
Selected AbstractsA substructure shaking table test for reproduction of earthquake responses of high-rise buildingsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2009Xiaodong Ji Abstract When subjected to long-period ground motions, high-rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full-scale substructure shaking table test to reproduce large floor responses of high-rise buildings. The response at the top floor of a virtual 30-story building model subjected to a synthesized long-period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber-and-mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open-loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H, method are adopted to construct the controller. A numerical example is presented to illustrate the open-loop IDCS algorithm and compare the performance of different methods of controller design. A series of full-scale substructure shaking table tests are conducted in E-Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber-and-mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd. [source] Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampersEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2009Anxin Guo Abstract Pounding between adjacent superstructures has been a major cause of highway bridge damage in the past several earthquakes. This paper presents an experimental and analytical study on pounding reduction of highway bridges subjected to earthquake ground motions by using magnetorheological (MR) dampers. An analytical model, which incorporates structural pounding and MR dampers, is developed. A series of shaking table tests on a 1:20 scaled base-isolated bridge model are performed to investigate the effects of pounding between adjacent superstructures on the dynamics of the structures. Based on the test results, the parameters of the linear and the nonlinear viscoelastic impact models are identified. Performance of the semiactive system for reducing structural pounding is also investigated experimentally, in which the MR dampers are used in conjunction with the proposed control strategy, to verify the effectiveness of the MR dampers. Structural responses are also simulated by using the established analytical model and compared with the shaking table test results. The results show that pounding between adjacent superstructures of the highway bridge significantly increases the structural acceleration responses. For the base-isolated bridge model considered here, the semiactive control system with MR dampers effectively precludes pounding. Copyright © 2009 John Wiley & Sons, Ltd. [source] Performance of a guideway seismic isolator with magnetic springs for precision machineryEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2009George C. Yao Abstract This paper proposes the use of the nonlinear restoring force in an isolation system to improve the performance of a seismic isolator. Nonlinear magnetic springs applied to guideway sliding isolators (GSI) that protect precision machinery against seismic motion were studied. The magnetic springs use a non-contact magnetic repulsion force to achieve a nonlinear property. A numerical simulation model of the GSI system using step-by-step integration in the time domain was developed. A full-scale shaking table test was performed to verify the accuracy of the numerical model. Simulation and experimental results show that the GSI system with magnetic springs has good performance when subjected to floor vibrations during earthquakes. A parametric analysis of the magnetic springs in the GSI system under seismic motion was theoretically investigated. It was found that sufficient magnetic forces can diminish the system relative displacements. Copyright © 2008 John Wiley & Sons, Ltd. [source] An investigation of tuned liquid dampers equipped with damping screens under 2D excitationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2005M. J. Tait Abstract This paper reports on the results of a study conducted on tanks partially filled with water, representing tuned liquid dampers (TLD), subjected to both 1D and 2D horizontal excitations. The sloshing response of the water in the tank is characterized by the free surface motion, the resulting base shear force, and evaluation of the energy dissipated by the sloshing water. A 1D non-linear flow model capable of simulating a TLD equipped with damping screens is employed to model a 2D TLD. Application of this particular model requires the assumption that the response is decoupled and can be treated as the summation of two independent 1D TLDs. Results from the non-linear flow model are compared with the 2D experimental shake table test results leading to a validation of the decoupled response assumption. This attractive decoupled response property allows square and rectangular tanks to be used as 2D TLDs, which can simultaneously reduce the dynamic response of a structure in two perpendicular modes of vibration. Copyright © 2005 John Wiley & Sons, Ltd. [source] Studies on seismic reduction of story-incresed buildings with friction layer and energy-dissipated devicesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2003Hong-Nan Li Abstract A new type of energy-dissipated structural system for existing buildings with story-increased frames is presented and investigated in this paper. In this system the sliding-friction layer between the lowest increased floor of the outer frame structure and the roof of the original building is applied, and energy-dissipated dampers are used for the connections between the columns of the outer frame and each floor of the original building. A shaking table test is performed on the model of the system and the simplified structural model of this system is given. The theory of the non-classical damping approach is introduced to the calculation analyses and compared with test results. The results show that friction and energy-dissipated devices are very effective in reducing the seismic response and dissipating the input energy of the model structure. Finally, the design scheme and dynamic time-history analyses of an existing engineering project are investigated to illustrate the application and advantages of the given method. Copyright © 2003 John Wiley & Sons, Ltd. [source] Consistency of dynamic site response at Port IslandEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2001Laurie G. Baise Abstract System identification (SI) methods are used to determine empirical Green's functions (EGF) for soil intervals at the Port Island Site in Kobe, Japan and in shake table model tests performed by the Port and Harbor Research Institute (PHRI) to emulate the site during the 17 January 1995 Hyogo-ken Nanbu earthquake. The model form for the EGFs is a parametric auto-regressive moving average (ARMA) model mapping the ground motions recorded at the base of a soil interval to the top of that interval, hence capturing the effect of the soil on the through-passing wave. The consistency of site response at Port Island before, during, and after the mainshock is examined by application of small motion foreshock EGFs to incoming ground motions over these time intervals. The prediction errors (or misfits) for the foreshocks, the mainshock, and the aftershocks, are assessed to determine the extent of altered soil response as a result of liquefaction of the ground during the mainshock. In addition, the consistency of soil response between field and model test is verified by application of EGFs calculated from the shake table test to the 17 January input data. The prediction error is then used to assess the consistency of behaviour between the two cases. By using EGFs developed for small-amplitude foreshock ground motions, ground motions were predicted for all intervals of the vertical array except those that liquefied with small error. Analysis of the post-liquefied ground conditions implies that the site response gradually returns to a pre-earthquake state. Site behaviour is found to be consistent between foreshocks and the mainshock for the native ground (below 16 m in the field) with a normalized mean square error (NMSE) of 0.080 and a peak ground acceleration (PGA) of 0.5g. When the soil actually liquefies (change of state), recursive models are needed to track the variable soil behaviour for the remainder of the shaking. The recursive models are shown to demonstrate consistency between the shake table tests and the field with a NMSE of 0.102 for the 16 m to surface interval that liquefied. The aftershock ground response was not modelled well with the foreshock EGF immediately after the mainshock (NMSE ranging from 0.37 to 0.92). One month after the mainshock, the prediction error from the foreshock modeled was back to the foreshock error level. Copyright © 2001 John Wiley Sons, Ltd. [source] Criteria for Pacemaker Explant in Patients Without a Precise Indication for Pacemaker ImplantationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2002MARTINO MARTINELLI MARTINELLI, M., et al.: Criteria for Pacemaker Explant in Patients Without a Precise Indication for Pacemaker Implantation. Unnecessary pacemaker implantation may cause significant social and psychological consequences, the inconvenience of periodic office visits, and the expense of pulse generator replacement. Establishing adequate criteria for explanting pacemakers is crucial and has not yet been described. This study presents the results of a study protocol for explanting the pacemaker in patients without a clear indication for pacemaker implantation. Seventy pacemaker users without a clear reason for the implantation were included in the study conducted from August 1986 to November 1998 and were prospectively followed. The investigation consisted of clinical and neurological evaluations, echocardiogram, exercise testing, and tilt table testing. When these tests were negative, the pulse generator energy and stimulation rates were reprogrammed to the lowest values. Periodic Holter monitoring was conducted during follow-up. When asymptomatic for 1 year, patients underwent an electrophysiological evaluation of sinus and atrioventricular junction function and ventricular vulnerability. When the electrophysiological study was negative, pacemaker explantation was performed. Of the 70 patients, 35 had their pacemaker explanted; 3 were excluded due to a positive tilt table test and electrophysiological study, and 3 are waiting for pacemaker explantation. Mean follow-up after pacemaker explantation was 30.3 months, and all patients remained asymptomatic, except for one patient who died of a noncardiac cause. Critical analysis of pacemaker users without a well-established indication is justified because it may allow pacemaker explant in a significant proportion of these patients, and it may bring considerable social, economic, and psychological benefits. [source] Physiologic neurocirculatory patterns in the head-up tilt test in children with orthostatic intolerancePEDIATRICS INTERNATIONAL, Issue 2 2008Zhang Qingyou Abstract Background: Orthostatic intolerance (OI) is a common clinical manifestation in clinical pediatrics. The head-up tilt (HUT) table test is considered the standard of orthostatic assessment, but the physiologic neurocirculatory profile during HUT has not been fully realized in children with OI. The present study, therefore, was designed to investigate the physiologic patterns that occur during HUT in children with OI. Methods: Ninety children (56 girls; mean age, 11.6 ± 2.3 years) with OI underwent HUT under quiet circumstances. Blood pressure and heart rate were monitored simultaneously. Results: Forty-nine children with OI (54.4%) had vasovagal response with HUT testing; 33 (36.7%), vasodepressor response; six (6.7%), cardioinhibitory response; and 10 (11.1%), mixed response. Twenty-eight children (31.1%) had postural orthostatic tachycardia; one (1.1%), orthostatic hypotension (OH); and 12 (13.3%), normal physiologic response. Patterns of cerebral syncope response and chronotropic incompetence were not observed. Conclusions: Classical vasovagal response was the major physiologic pattern seen in children with OI during HUT testing, and postural orthostatic tachycardia response ranked second. [source] Identification of Time-Variant Modal Parameters Using Time-Varying Autoregressive with Exogenous Input and Low-Order Polynomial FunctionCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 7 2009C. S. Huang By developing the equivalent relations between the equation of motion of a time-varying structural system and the TVARX model, this work proves that instantaneous modal parameters of a time-varying system can be directly estimated from the TVARX model coefficients established from displacement responses. A moving least-squares technique incorporating polynomial basis functions is adopted to approximate the coefficient functions of the TVARX model. The coefficient functions of the TVARX model are represented by polynomials having time-dependent coefficients, instead of constant coefficients as in traditional basis function expansion approaches, so that only low orders of polynomial basis functions are needed. Numerical studies are carried out to investigate the effects of parameters in the proposed approach on accurately determining instantaneous modal parameters. Numerical analyses also demonstrate that the proposed approach is superior to some published techniques (i.e., recursive technique with a forgetting factor, traditional basis function expansion approach, and weighted basis function expansion approach) in accurately estimating instantaneous modal parameters of a structure. Finally, the proposed approach is applied to process measured data for a frame specimen subjected to a series of base excitations in shaking table tests. The specimen was damaged during testing. The identified instantaneous modal parameters are consistent with observed physical phenomena. [source] A Wavelet-Based Approach to Identifying Structural Modal Parameters from Seismic Response and Free Vibration DataCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 6 2005C. S. Huang The wavelet transform with orthonormal wavelets is applied to the measured acceleration responses of a structural system, and to reconstruct the discrete equations of motion in various wavelet subspaces. The accuracy of this procedure is numerically confirmed; the effects of mother wavelet functions and noise on the ability to accurately estimate the dynamic characteristics are also investigated. The feasibility of the present procedure to elucidate real structures is demonstrated through processing the measured responses of steel frames in shaking table tests and the free vibration responses of a five-span arch bridge with a total length of 440 m. [source] Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table testsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2010M. De Angelis Abstract In this paper, the effectiveness of the base isolation on steel storage tanks has been investigated through numerical models and then checked by shaking table tests on a reduced scale (1:14) model of a real steel tank, typically used in petrochemical plants. In the experimental campaign the floating roof has also been taken into account. The tests have been performed on the physical model both in fixed and isolated base configurations; in particular two alternative base isolation systems have been used: high-damping rubber bearings devices and sliding isolators with elasto-plastic dampers. Finally, a comparison between experimental and numerical results has also been performed. Copyright © 2009 John Wiley & Sons, Ltd. [source] A substructure shaking table test for reproduction of earthquake responses of high-rise buildingsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2009Xiaodong Ji Abstract When subjected to long-period ground motions, high-rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full-scale substructure shaking table test to reproduce large floor responses of high-rise buildings. The response at the top floor of a virtual 30-story building model subjected to a synthesized long-period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber-and-mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open-loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H, method are adopted to construct the controller. A numerical example is presented to illustrate the open-loop IDCS algorithm and compare the performance of different methods of controller design. A series of full-scale substructure shaking table tests are conducted in E-Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber-and-mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd. [source] Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampersEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2009Anxin Guo Abstract Pounding between adjacent superstructures has been a major cause of highway bridge damage in the past several earthquakes. This paper presents an experimental and analytical study on pounding reduction of highway bridges subjected to earthquake ground motions by using magnetorheological (MR) dampers. An analytical model, which incorporates structural pounding and MR dampers, is developed. A series of shaking table tests on a 1:20 scaled base-isolated bridge model are performed to investigate the effects of pounding between adjacent superstructures on the dynamics of the structures. Based on the test results, the parameters of the linear and the nonlinear viscoelastic impact models are identified. Performance of the semiactive system for reducing structural pounding is also investigated experimentally, in which the MR dampers are used in conjunction with the proposed control strategy, to verify the effectiveness of the MR dampers. Structural responses are also simulated by using the established analytical model and compared with the shaking table test results. The results show that pounding between adjacent superstructures of the highway bridge significantly increases the structural acceleration responses. For the base-isolated bridge model considered here, the semiactive control system with MR dampers effectively precludes pounding. Copyright © 2009 John Wiley & Sons, Ltd. [source] Seismic evaluation of 1940s asymmetric wood-frame building using conventional measurements and high-definition laser scanningEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2009Khalid M. Mosalam Abstract This study presents results from shake table experiments of a wood-frame building conducted at the University of California, Berkeley. A 13.5-ft × 19.5-ft two-story wood-frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house-over-garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high-definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd. [source] Experimental performance evaluation of an equipment isolation using MR dampersEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2009Yu-Cheng Fan Abstract Critical non-structural equipments, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., are vulnerable to strong earthquakes, and the failure of these equipments may result in a heavy economic loss. In this connection, innovative control systems and strategies are needed for their seismic protections. This paper presents the performance evaluation of passive and semi-active control in the equipment isolation system for earthquake protection. Through shaking table tests of a 3-story steel frame with equipment on the first floor, a magnetorheological (MR)-damper together with a sliding friction pendulum isolation system is placed between the equipment and floor to reduce the vibration of the equipment. Various control algorithms are used for this semi-active control studies, including the decentralized sliding mode control (DSMC) and LQR control. The passive-on and passive-off control of MR damper is used as a reference for the discussion on the control effectiveness. Copyright © 2008 John Wiley & Sons, Ltd. [source] Shaking table tests on seismic response of steel braced frames with column upliftEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2006Mitsumasa Midorikawa Abstract Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base-plate-yielding rocking systems with columns allowed to uplift with that of fixed-base systems. The study is performed using half-scale three-storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/,2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed-base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self-limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd. [source] Effect of variation of normal force on seismic performance of resilient sliding isolation systems in highway bridgesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2005Hirokazu Iemura Abstract In this study, a series of shaking table tests are carried out on scaled models of two seismically isolated highway bridges to investigate the effect of rocking motion and vertical acceleration on seismic performance of resilient sliding isolators. In addition, performance of RSI is compared with system having solely natural rubber bearings. Test results show that variation of normal force on sliders due to rocking effect and vertical acceleration makes no significant difference in response of RSI systems. In addition, analytical response of prototype isolated bridge and the model used in experiments is obtained analytically by using non-linear model for isolation systems. It is observed that for seismically isolated bridges, dynamic response of full-scale complex structures can be predicted with acceptable accuracy by experiments using a simple model of the structure. Copyright © 2005 John Wiley & Sons, Ltd. [source] Shaking table tests on reinforced concrete frames without and with passive control systemsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2005Mauro Dolce Abstract An extensive experimental program of shaking table tests on reduced-scale structural models was carried out within the activities of the MANSIDE project, for the development of new seismic isolation and energy dissipation devices based on shape memory alloys (SMAs). The aim of the experimental program was to compare the behaviour of structures endowed with innovative SMA-based devices to the behaviour of conventional structures and of structures endowed with currently used passive control systems. This paper presents a comprehensive overview of the main results of the shaking table tests carried out on the models with and without special braces. Two different types of energy dissipating and re-centring braces have been considered to enhance the seismic performances of the tested model. They are based on the hysteretic properties of steel elements and on the superelastic properties of SMAs, respectively. The addition of passive control braces in the reinforced concrete frame resulted in significant benefits on the overall seismic behaviour. The seismic intensity producing structural collapse was considerably raised, interstorey drifts and shear forces in columns were drastically reduced. Copyright © 2005 John Wiley & Sons, Ltd. [source] Experimental study of the semi-active control of building structures using the shaking tableEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2003Qing Sun Abstract A magnetorheological (MR) damper has been manufactured and tested and a non-linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three-storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi-active control method such as a variable structure controller is studied. Based on the ,reaching law' method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd. [source] Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion.EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2003Part 1: experiment Abstract This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high-tech equipment installed in a building subject to nearby traffic-induced ground motion. A three-storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high-tech equipment in the building subject to nearby traffic-induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd. [source] Experimental and theoretical simulations of seismic poundings between two adjacent structuresEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2003K. T. Chau Abstract Shaking table tests have been carried out to investigate the pounding phenomenon between two steel towers of different natural frequencies and damping ratios, subject to different combinations of stand-off distance and seismic excitations. Both harmonic waves and ground motions of the 1940 El Centro earthquake are used as input. Subjected to sinusoidal excitations, poundings between the two towers could appear as either periodic or chaotic. For periodic poundings, impact normally occurs once within each excitation cycle or within every other excitation cycle. A type of periodic group poundings was also observed for the first time (i.e. a group of non-periodic poundings repeating themselves periodically). Chaotic motions develop when the difference of the natural frequency of the two towers become larger. Under sinusoidal excitations, the maximum relative impact velocity always develops at an excitation frequency between the natural frequencies of the two towers. Both analytical and numerical predictions of the relative impact velocity, the maximum stand-off distance, and the excitation frequency range for pounding occurrences were made and found to be comparable with the experimental observations in most of the cases. The stand-off distance attains a maximum when the excitation frequency is close to that of the more flexible tower. Pounding appears to amplify the response of the stiffer structure but suppress that of the more flexible structure; and this agrees qualitatively with previous shaking table tests and theoretical studies. Copyright © 2003 John Wiley & Sons, Ltd. [source] A neural network approach for structural identification and diagnosis of a building from seismic response dataEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2003C. S. Huang Abstract This work presents a novel procedure for identifying the dynamic characteristics of a building and diagnosing whether the building has been damaged by earthquakes, using a back-propagation neural network approach. The dynamic characteristics are directly evaluated from the weighting matrices of the neural network trained by observed acceleration responses and input base excitations. Whether the building is damaged under a large earthquake is assessed by comparing the modal parameters and responses for this large earthquake with those for a small earthquake that has not caused this building any damage. The feasibility of the approach is demonstrated through processing the dynamic responses of a five-storey steel frame, subjected to different strengths of the Kobe earthquake, in shaking table tests. Copyright © 2002 John Wiley & Sons, Ltd. [source] Study on effects of damping in laminated rubber bearings on seismic responses for a , scale isolated test structureEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2002Bong Yoo Abstract The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ,-scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd. [source] Dynamic analysis method of a combined energy dissipation system and its experimental verificationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2002Xilin Lu Abstract A combined energy dissipation system is developed in this paper. In this system lead rubber dampers and their parallel connection with oil dampers are used in the braces of a structural frame. A dynamic analysis method of the system, including the modelling of the lead rubber damper and the oil damper, is proposed. In the analysis method, the restoring force characterestics of the lead rubber damper is simulated by the Bouc,Wen hysteretic model, and the behaviour of the oil damper is simulated by a velocity and displacement-related model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. A series of shaking table tests of a three-storey steel frame with the combined energy dissipation system are carried out to evaluate the performance of the system and to verify the analysis method. The test and analysis show that the performance of the combined energy dissipation system is quite satisfactory and there is a good agreement between the analysis and test results, which indicates that the analysis method proposed in this paper is valid and suitable for the dynamic analysis of the combined energy dissipation system. Copyright © 2002 John Wiley & Sons, Ltd. [source] A mathematical hysteretic model for elastomeric isolation bearingsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2002J. S. Hwang Abstract An analytical model for high damping elastomeric isolation bearings is presented in this paper. The model is used to describe mathematically the damping force and restoring force of the rubber material and bearing. Ten parameters to be identified from cyclic loading tests are included in the model. The sensitivity of the ten parameters in affecting the model is examined. These ten parameters are functions of a number of influence factors on the elastomer such as the rubber compound, Mullins effect, scragging effect, frequency, temperature and axial load. In this study, however, only the Mullins effect, scragging effect, frequency and temperature are investigated. Both material tests and shaking table tests were performed to validate the proposed model. Based on the comparison between the experimental and the analytical results, it is found that the proposed analytical model is capable of predicting the shear force,displacement hysteresis very accurately for both rubber material and bearing under cyclic loading reversals. The seismic response time histories of the bearing can also be captured, using the proposed analytical model, with a practically acceptable precision. Copyright © 2002 John Wiley & Sons, Ltd. [source] Consistency of dynamic site response at Port IslandEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2001Laurie G. Baise Abstract System identification (SI) methods are used to determine empirical Green's functions (EGF) for soil intervals at the Port Island Site in Kobe, Japan and in shake table model tests performed by the Port and Harbor Research Institute (PHRI) to emulate the site during the 17 January 1995 Hyogo-ken Nanbu earthquake. The model form for the EGFs is a parametric auto-regressive moving average (ARMA) model mapping the ground motions recorded at the base of a soil interval to the top of that interval, hence capturing the effect of the soil on the through-passing wave. The consistency of site response at Port Island before, during, and after the mainshock is examined by application of small motion foreshock EGFs to incoming ground motions over these time intervals. The prediction errors (or misfits) for the foreshocks, the mainshock, and the aftershocks, are assessed to determine the extent of altered soil response as a result of liquefaction of the ground during the mainshock. In addition, the consistency of soil response between field and model test is verified by application of EGFs calculated from the shake table test to the 17 January input data. The prediction error is then used to assess the consistency of behaviour between the two cases. By using EGFs developed for small-amplitude foreshock ground motions, ground motions were predicted for all intervals of the vertical array except those that liquefied with small error. Analysis of the post-liquefied ground conditions implies that the site response gradually returns to a pre-earthquake state. Site behaviour is found to be consistent between foreshocks and the mainshock for the native ground (below 16 m in the field) with a normalized mean square error (NMSE) of 0.080 and a peak ground acceleration (PGA) of 0.5g. When the soil actually liquefies (change of state), recursive models are needed to track the variable soil behaviour for the remainder of the shaking. The recursive models are shown to demonstrate consistency between the shake table tests and the field with a NMSE of 0.102 for the 16 m to surface interval that liquefied. The aftershock ground response was not modelled well with the foreshock EGF immediately after the mainshock (NMSE ranging from 0.37 to 0.92). One month after the mainshock, the prediction error from the foreshock modeled was back to the foreshock error level. Copyright © 2001 John Wiley Sons, Ltd. [source] Impairment of Coronary Microvascular Function in Patients with Neurally Mediated SyncopePACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2p1 2003JAW-WEN CHEN CHEN, J.-W., et al.: Impairment of Coronary Microvascular Function in Patients with Neurally Mediated Syncope.Recent evidence suggests that myocardial ischemia may occur in patients with neurally mediated syncope and normal coronary angiograms. This study was conducted to evaluate if coronary microvascular function is impaired in such patients. Coronary hemodynamic studies and head-up tilt table tests (HUTs) were performed on 30 consecutive patients with normal coronary angiograms and recurrent syncope. Another ten subjects with atypical chest pain and no evidence of myocardial ischemia or syncope served as a control. Great cardiac vein flow (GCVF) and coronary sinus flow (CSF) were measured by the thermodilution method at baseline and after dipyridamole infusion (0.56 mg/kg IV for 4 minutes). Coronary flow reserve (CFR), derived from CSF and GCVF, was significantly lower in the 15 patients with positive HUT than in the other 15 patients with negative HUT (1.75 ± 0.48vs2.64 ± 0.8, P < 0.01and2.29 ± 0.45vs3.07 ± 0.63, P < 0.01, respectively). Ischemic-like ECG was noted during treadmill exercise test in 40% of the former and in 7% of the latter group(P = 0.01). There was no significant difference in CFR between patients with negative HUT and control subjects. Coronary microvascular function was impaired in syncopal patients with positive HUT and relatively preserved in those with negative HUT, suggesting the possible linkage between coronary microvascular dysfunction and the development of neurally mediated syncope. (PACE 2003; 26[Pt. I]:605,612) [source] |