Home About us Contact | |||
Tabaci Strain (tabaci + strain)
Selected AbstractsContributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P. syringae pv. tabaciMOLECULAR PLANT PATHOLOGY, Issue 6 2009PATRIZIA FERRANTE SUMMARY To study the role of type III-secreted effectors in the host adaptation of the tobacco (Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci, a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean (Phaseolus vulgaris) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species. [source] Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2010Yuntao Feng Abstract BACKGROUND: B-biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross-resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3-fold thiamethoxam-resistant B. tabaci strain (TH-R) was established after selection for 36 generations. Compared with the susceptible strain (TH-S), the selected TH-R strain showed obvious cross-resistance to imidacloprid (47.3-fold), acetamiprid (35.8-fold), nitenpyram (9.99-fold), abamectin (5.33-fold) and carbosulfan (4.43-fold). No cross-resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH-R strain (3.14- and 2.37-fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21- and 1.68-fold respectively, and carboxylesterase activity increased 2.96-fold in the TH-R strain. However, no difference was observed for glutathione S -transferase between the two strains. CONCLUSION: B-biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross-resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry [source] Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P. syringae pv. tabaciMOLECULAR PLANT PATHOLOGY, Issue 6 2009PATRIZIA FERRANTE SUMMARY To study the role of type III-secreted effectors in the host adaptation of the tobacco (Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci, a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean (Phaseolus vulgaris) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species. [source] Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance ,ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2005A. Rami Horowitz Abstract Resistance monitoring for Bemisia tabaci field populations to the juvenile hormone mimic, pyriproxyfen, was conducted from 1996 to 2003 in commercial cotton fields in two areas of Israel: the Ayalon Valley (central Israel) and the Carmel Coast (northwestern Israel). Although the use of pyriproxyfen ceased in these areas in 1996,1997 (because of the resistance), resistance levels to pyriproxyfen declined to some extent in the fields but remained quite stable, and the susceptibility has not been totally restored. Two strains of B. tabaci collected from the Ayalon Valley in the late 1999 and 2002 cotton seasons (AV99L, AV02L) were assayed for their susceptibility to pyriproxyfen at F1, and subsequently a line of each strain was kept under controlled conditions without exposure to insecticides. After maintenance of more than 20 generations under laboratory conditions, the resistance to pyriproxyfen in the untreated strains substantially declined. This decline was concurrent with a replacement of Q biotype by B-type under non-insecticidal regimes; apparently B biotype was more competitive than the pyriproxyfen-resistant Q-type. Selection under controlled conditions with neonicotinoids on these B. tabaci strains resulted in continued pyriproxyfen resistance, predominantly of Q biotype. Based on our data, applications of either pyriproxyfen or neonicotinoids may select for biotype Q, which would survive to a greater degree where these insecticides are applied. Arch. Insect Biochem. Physiol. 58:216,225, 2005. © 2005 Wiley-Liss, Inc. [source] |