Home About us Contact | |||
Taxonomic Richness (taxonomic + richness)
Selected AbstractsLatitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects?JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 3 2005A. Brayard Abstract For several decades, the origin and ecological consequences of large-scale continental and marine Latitudinal Gradients of Taxonomic Richness (LGTR) have been intensively debated. Among the various hypotheses, it has been proposed that a LGTR is the by-product of a geographic mid-domain effect, i.e. the result of a random distribution of ranges of taxa between physical hard boundaries such as the continent/ocean interface. In order to more realistically evaluate the role of the mid-domain effect on the origin and evolution of the LGTR of marine planktonic organisms, we present a 2D model based on a cellular-automaton approach in which sea surface temperatures (SST) and currents are forced in the biogeographic dispersal of a randomly generated clade (a 2D ,geophyletic' model). Sensitivity experiments allow to evaluate the effects of currents, SST and the geographical origin of a clade on the formation and shape of a LGTR for planktonic organisms when coupled with a geographic mid-domain effect. Results are discussed in the light of the empirical LGTR of extant planktonic Foraminifera in the Atlantic Ocean. Independently of any other biotic or abiotic parameter, inclusive of the surface currents and origination/extinction absolute and relative rates, our simulations show that the coupling of the mid-domain effect with two critical parameters, namely the shape and intensity of the SST gradient and the geographic origin of a clade, produces realistic patterns of diversity when compared with the observed LGTR of extant atlantic planktonic foraminifera. The results illustrate a non-linear relation between a unimodal latitudinal SST gradient and a resulting bimodal LGTR characterized by a drop in species richness near the equator. This relation indicates that the SST gradient exerts a mid-domain effect on the LGTR. The latitudinal positions of the modal values of the LGTR are also found to be influenced by the geographic origin of the simulated clade. Résumé Depuis plusieurs décennies, l'origine et l'interprétation écologique des Gradients Latitudinaux de Richesse Taxonomique (LGTR) marins ou continentaux, ont été intensivement débattues. Parmi de nombreuses hypothèses, il a été proposé qu'un LGTR puisse être le sous-produit d'un effet de milieu de domaine géographique, i.e. le résultat d'une distribution aléatoire des répartitions des taxa entre deux limites physiques telles que l'interface continent/océan. Afin d'évaluer plus efficacement le rôle de cet effet sur l'origine et l'évolution des LGTR des organismes planctoniques marins, nous proposons un modèle 2D basé sur une approche de type automate cellulaire dans laquelle les températures des eaux de surface (SST) et les courants régulent la dispersion biogéographique d'une phylogénie générée aléatoirement (un modèle «géophylétique»). Ce modèle permet d'évaluer les effets des courants, des SST et de la dépendance thermique des espèces sur la mise en place et la forme d'un LGTR impliquant des organismes planctoniques. Il permet aussi de discuter des influences respectives de ces paramètres quand ils sont superposés à l'effet de milieu de domaine géographique. Les résultats sont discutés à partir du LGTR empirique des foraminifères planctoniques atlantiques actuels. Indépendamment de tout autre paramètre biotique ou abiotique, y compris les courants ainsi que les taux relatifs et absolus d'apparition et d'extinction, les simulations font apparaître que le couplage de l'effet de milieu de domaine à deux contraintes principales, la forme et l'intensité du gradient de SST ainsi que la localisation géographique de l'origine du clade, produit des représentations réalistes de la diversité comparées au LGTR observé pour les foraminifères planctoniques actuels de l'océan atlantique. Nos résultats indiquent une relation non-linéaire entre la structure globale d'un gradient unimodal de SST et le LGTR bimodal correspondant, montrant une baisse de richesse spécifique au niveau de l'équateur. Cette relation suggère que le gradient de SST exerce un effet de milieu de domaine thermique sur le LGTR. Les positions latitudinales des modes du LGTR sont aussi influencées par le lieu d'origine du clade simulé. [source] Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysisDIVERSITY AND DISTRIBUTIONS, Issue 2 2007Jessica M. Ward ABSTRACT Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena, but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods (Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates. [source] Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richnessECOLOGY LETTERS, Issue 12 2004David J. Currie Abstract Broad-scale variation in taxonomic richness is strongly correlated with climate. Many mechanisms have been hypothesized to explain these patterns; however, testable predictions that would distinguish among them have rarely been derived. Here, we examine several prominent hypotheses for climate,richness relationships, deriving and testing predictions based on their hypothesized mechanisms. The ,energy,richness hypothesis' (also called the ,more individuals hypothesis') postulates that more productive areas have more individuals and therefore more species. More productive areas do often have more species, but extant data are not consistent with the expected causal relationship from energy to numbers of individuals to numbers of species. We reject the energy,richness hypothesis in its standard form and consider some proposed modifications. The ,physiological tolerance hypothesis' postulates that richness varies according to the tolerances of individual species for different sets of climatic conditions. This hypothesis predicts that more combinations of physiological parameters can survive under warm and wet than cold or dry conditions. Data are qualitatively consistent with this prediction, but are inconsistent with the prediction that species should fill climatically suitable areas. Finally, the ,speciation rate hypothesis' postulates that speciation rates should vary with climate, due either to faster evolutionary rates or stronger biotic interactions increasing the opportunity for evolutionary diversification in some regions. The biotic interactions mechanism also has the potential to amplify shallower, underlying gradients in richness. Tests of speciation rate hypotheses are few (to date), and their results are mixed. [source] Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streamsFRESHWATER BIOLOGY, Issue 3 2008ANDRE E. KOHLER Summary 1. Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated. 2. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. 3. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (,15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. 4. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. 5. Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide. [source] All creatures great and small: patterns in the stream benthos across a wide range of metazoan body sizeFRESHWATER BIOLOGY, Issue 3 2003Tracey K. Stead SUMMARY 1. The whole metazoan community (i.e. including the meiofauna) of an acidic, fishless stream in south-east England was surveyed over 14 months between March 1999 and April 2000. Invertebrate density, biomass and taxonomic richness were assessed on each sampling occasion in relation to physico-chemical variables. 2. The meiofauna were more numerous and diverse than the macrofauna, while their total biomass occasionally equalled that of the macrofauna. 3. The meiofaunal and macrofaunal assemblages appeared to respond to different environmental factors. The meiofauna showed genuine species turnover through the year, while the macrofauna varied less in taxonomic composition though there were substantial variations in density. 4. These data suggest that the meiofauna and macrofauna exist at different temporal and spatial scales and perceive their environment with a different ,grain'. [source] Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary ratesGLOBAL ECOLOGY, Issue 4 2007Matthew G. Powell ABSTRACT Aim, The latitudinal diversity gradient, in which taxonomic richness is greatest at low latitudes and declines towards the poles, is a pervasive feature of the biota through geological time. This study utilizes fossil data to examine how the latitudinal diversity gradient and associated spatial patterns covaried through the major climate shifts at the onset and end of the late Palaeozoic ice age. Location, Data were acquired from fossil localities from around the world. Methods, Latitudinal patterns of diversity, mean geographical range size and macroevolutionary rates were constructed from a literature-derived data base of occurrences of fossil brachiopod genera in space and time. The literature search resulted in a total of 18,596 occurrences for 991 genera from 2320 localities. Results, Climate changes associated with the onset of the late Palaeozoic ice age (c. 327 Ma) altered the biogeographical structure of the brachiopod fauna by the preferential elimination of narrowly distributed, largely tropical genera when glaciation began. Because the oceans were left populated primarily with widespread genera, the slope of the diversity gradient became gentle at this time, and the gradient of average latitudinal range size weakened. In addition, because narrowly distributed genera had intrinsically high rates of origination and extinction, the gradients of both of these macroevolutionary rates were also reduced. These patterns were reversed when the ice age climate abated in early Permian time (c. 290 Ma): narrowly distributed genera rediversified at low latitudes, restoring steep gradients of diversity, average latitudinal range size and macroevolutionary rates. Main conclusions, During late Palaeozoic time, these latitudinal gradients for brachiopods may have been linked by the increased magnitude of seasonality during the late Palaeozoic ice age. Pronounced seasonality would have prevented the existence of genera with narrow latitudinal ranges. These results for the late Palaeozoic ice age suggest a climatic basis for the present-day latitudinal diversity gradient. [source] Power law relationships among hierarchical taxonomic categories in algae reveal a new paradox of the planktonGLOBAL ECOLOGY, Issue 5 2006Sophia I. Passy ABSTRACT Aim, In this continental-scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location, Streams from more than 50 major watersheds in the United States. Method, A total of 3698 samples were collected from 1277 locations by the National Water-Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln-transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: T,Sb. Results, Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions, The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton. [source] The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradientJOURNAL OF BIOGEOGRAPHY, Issue 3 2005Jason Pither Abstract Aim, To interpret the unimodal relationship between diatom species richness and lake pH within the context of the evolutionary species pool hypothesis (SPH). We test the following primary prediction arising from the SPH: the size of the potential species pool (PSP) will increase along a gradient representing the historical commonness of different pH environments (pH commonness). To do this we assume that the present-day spatial dominance of near-neutral pH conditions compared with acidic and alkaline conditions reliably mimics the relative spatial availabilities of historical pH conditions among freshwater lakes. We also determine whether local richness represents a constant proportion of PSP size along the pH commonness gradient. Location, Two hundred and thirty-four lakes distributed over a 405,000 km2 region of the north-eastern United States of America. Methods, Sediment diatom morphospecies lists and pH data were acquired from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) website. Using 248 morphospecies that occurred in at least 10 of the 234 lakes, four different measures of PSPs were calculated along the pH gradient. Local species richness was equated with the number of species occurring within the lake. Alpha diversity was equated with the average species richness of lakes with similar pH values. A combination of statistical methods were employed, including correlations, quadratic regression and piecewise regression. Results, PSP size increased significantly with pH commonness for all four measures of PSP size, thus supporting the primary prediction of the evolutionary SPH. Local richness comprised a larger proportion of the PSP within acidic lakes than within circumneutral lakes. Alpha diversity and lake species richness both increased significantly with pH commonness, but the former did so in a two-step fashion. We test and reject several alternative contemporary time-scale explanations for our findings. Main Conclusions, Our findings are consistent with the hypothesis that diatom taxonomic richness is presently lower within acidic and highly alkaline lakes than in circumneutral lakes owing to the limited opportunity in space and/or time for the evolution of suitably adapted species. Whereas ecological processes can explain why certain species are excluded from particular habitats, e.g. acidic lakes, they cannot account for why so few species are adapted to those habitats in the first place. [source] Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitatsJOURNAL OF BIOGEOGRAPHY, Issue 5 2003Miguel Clavero Abstract Aim To analyse the geographical patterns in the composition and diversity of otter's (Lutra lutra L.) diet and their relationship with climatic characteristics. Location European freshwater habitats under Mediterranean and temperate climatic regimes. Methods Thirty-seven otter diet studies were reviewed, twenty-one from temperate and sixteen from Mediterranean areas. All studies were based on spraint analysis and their results expressed as relative frequency of occurrence of seven main prey categories. Principal Component Analysis was performed to extract the main gradients of diet composition. Pearson's correlation and t -tests were used to assess the relationship between diet characteristics (composition, diversity and taxonomic richness) and geographical and climatic variables. Results A clear latitudinal gradient in diet composition was observed. Otter diet was more diverse and featured more prey classes in southern localities, while the species was more piscivorous towards the north, where it predated upon a higher number of fish families. This pattern was similar when temperate and Mediterranean localities of Europe were compared. Mediterranean otters behaved as more generalist predators than temperate ones, relying less on fish, and more on aquatic invertebrates and reptiles. Main conclusions Geographical differences in otter feeding ecology in Europe seem to be related with the two contrasted climatic conditions affecting prey populations. The otter can act as a highly specialized piscivorous predator in temperate freshwater ecosystems, which do not suffer a dry season and have a comparatively stable water regime compared to Mediterranean ones. However, the unpredictable prey availability in Mediterranean areas, affected by strong spatial and temporal water shortages, favours a diversification of the otter's diet. [source] Revisiting Jablonski (1993): cladogenesis and range expansion explain latitudinal variation in taxonomic richnessJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2007P. R. MARTIN Abstract The increase in diversity towards the equator arises from latitudinal variation in rates of cladogenesis, extinction, immigration and/or emigration of taxa. We tested the relative contribution of all four processes to the latitudinal gradient in 26 marine invertebrate orders with extensive fossil records, examined previously by David Jablonski. Coupling Jablonski's estimates of latitudinal variation in cladogenesis with new data on patterns of extinction and current distributions, we show that the present-day gradient in diversity is caused by higher rates of cladogenesis and subsequent range expansion (immigration) at lower latitudes. In contrast, extinction and emigration were not important in the creation of the latitudinal gradient in ordinal richness. This work represents one of the first simultaneous tests of the role of all four processes in the creation of the latitudinal gradient in taxonomic richness, and suggests that low tropical extinction rates are not essential to the creation of latitudinal diversity gradients. [source] Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects?JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 3 2005A. Brayard Abstract For several decades, the origin and ecological consequences of large-scale continental and marine Latitudinal Gradients of Taxonomic Richness (LGTR) have been intensively debated. Among the various hypotheses, it has been proposed that a LGTR is the by-product of a geographic mid-domain effect, i.e. the result of a random distribution of ranges of taxa between physical hard boundaries such as the continent/ocean interface. In order to more realistically evaluate the role of the mid-domain effect on the origin and evolution of the LGTR of marine planktonic organisms, we present a 2D model based on a cellular-automaton approach in which sea surface temperatures (SST) and currents are forced in the biogeographic dispersal of a randomly generated clade (a 2D ,geophyletic' model). Sensitivity experiments allow to evaluate the effects of currents, SST and the geographical origin of a clade on the formation and shape of a LGTR for planktonic organisms when coupled with a geographic mid-domain effect. Results are discussed in the light of the empirical LGTR of extant planktonic Foraminifera in the Atlantic Ocean. Independently of any other biotic or abiotic parameter, inclusive of the surface currents and origination/extinction absolute and relative rates, our simulations show that the coupling of the mid-domain effect with two critical parameters, namely the shape and intensity of the SST gradient and the geographic origin of a clade, produces realistic patterns of diversity when compared with the observed LGTR of extant atlantic planktonic foraminifera. The results illustrate a non-linear relation between a unimodal latitudinal SST gradient and a resulting bimodal LGTR characterized by a drop in species richness near the equator. This relation indicates that the SST gradient exerts a mid-domain effect on the LGTR. The latitudinal positions of the modal values of the LGTR are also found to be influenced by the geographic origin of the simulated clade. Résumé Depuis plusieurs décennies, l'origine et l'interprétation écologique des Gradients Latitudinaux de Richesse Taxonomique (LGTR) marins ou continentaux, ont été intensivement débattues. Parmi de nombreuses hypothèses, il a été proposé qu'un LGTR puisse être le sous-produit d'un effet de milieu de domaine géographique, i.e. le résultat d'une distribution aléatoire des répartitions des taxa entre deux limites physiques telles que l'interface continent/océan. Afin d'évaluer plus efficacement le rôle de cet effet sur l'origine et l'évolution des LGTR des organismes planctoniques marins, nous proposons un modèle 2D basé sur une approche de type automate cellulaire dans laquelle les températures des eaux de surface (SST) et les courants régulent la dispersion biogéographique d'une phylogénie générée aléatoirement (un modèle «géophylétique»). Ce modèle permet d'évaluer les effets des courants, des SST et de la dépendance thermique des espèces sur la mise en place et la forme d'un LGTR impliquant des organismes planctoniques. Il permet aussi de discuter des influences respectives de ces paramètres quand ils sont superposés à l'effet de milieu de domaine géographique. Les résultats sont discutés à partir du LGTR empirique des foraminifères planctoniques atlantiques actuels. Indépendamment de tout autre paramètre biotique ou abiotique, y compris les courants ainsi que les taux relatifs et absolus d'apparition et d'extinction, les simulations font apparaître que le couplage de l'effet de milieu de domaine à deux contraintes principales, la forme et l'intensité du gradient de SST ainsi que la localisation géographique de l'origine du clade, produit des représentations réalistes de la diversité comparées au LGTR observé pour les foraminifères planctoniques actuels de l'océan atlantique. Nos résultats indiquent une relation non-linéaire entre la structure globale d'un gradient unimodal de SST et le LGTR bimodal correspondant, montrant une baisse de richesse spécifique au niveau de l'équateur. Cette relation suggère que le gradient de SST exerce un effet de milieu de domaine thermique sur le LGTR. Les positions latitudinales des modes du LGTR sont aussi influencées par le lieu d'origine du clade simulé. [source] The Contribution of Secondary Space to Benthic Taxon Richness of a Coral Reef: Colonisation of Dendrostrea frons (Mollusca)MARINE ECOLOGY, Issue 3 2001David K. A. Barnes Abstract. The reef-dwelling oyster Dendrostrea frons occupied only a small proportion of space in coral reefs of the Quirimba Archipelago, Mozambique, but supported a disproportionately high variety of taxa. Assemblages on primary (substratum), secondary (dead coral heads) and ephemeral secondary space (D. frons shells) of similar area were compared across 5 depths (5, 10, 15, 20 and 25 m) and at four taxonomic levels (species, genus, class and phylum). Differences between the taxonomic richness of each type of space differed with both taxonomic level considered and depth. Of the three categories of space considered, ephemeral secondary space had the most taxa at all levels with the maximum at 10,,,15 m. Despite being small in space and time, animal externa, such as shells of D. frons, may provide important niches for particular organisms at many taxonomic levels. [source] |