Taurine Concentrations (taurine + concentration)

Distribution by Scientific Domains


Selected Abstracts


Taurine concentrations in animal feed ingredients; cooking influences taurine content

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 7-8 2003
A. R. Spitze
Summary The aim of this study was to determine the taurine content in a variety of animal feeds. There is very little information on the taurine content of ingredients used in home-prepared diets for dogs and cats, and foods fed to wild animals in captivity. This study reports the taurine content of both common and alternative feed ingredients, and compares taurine loss as a result of different methods of food preparation. Foods were selected based on their use in commercial and home-prepared diets. Animal muscle tissue, particularly marine, contained high taurine concentrations. Plant products contained either low or undetectable amounts of taurine. The amount of taurine that remained in a feed ingredient after cooking depended upon the method of food preparation. When an ingredient was constantly surrounded by water during the cooking process, such as in boiling or basting, more taurine was lost. Food preparation methods that minimized water loss, such as baking or frying, had higher rates of taurine retention. [source]


HIGH-DOSE TAURINE SUPPLEMENTATION INCREASES SERUM PARAOXONASE AND ARYLESTERASE ACTIVITIES IN EXPERIMENTAL HYPOTHYROIDISM

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 9 2007
Melahat Dirican
SUMMARY 1Hypothyroidism is accompanied by hyperlipidaemia and oxidative stress and is associated with several complications, such as atherosclerosis. Paraoxonase activity has been reported to decrease in several situations associated with atherosclerosis and oxidative stress. In the present study, the effects of different doses of taurine on serum paraoxonase and arylesterase activities, as well as on the serum lipid profile, were investigated in hypothyroid rats. 2Forty male Sprague-Dawley rats were randomly divided into five groups as follows: Group 1, rats received normal rat chow and tap water; Group 2, rats received standard rat chow + 0.05% propylthiouracil (PTU) in the drinking water; and Groups 3,5, taurine-supplemented PTU groups (standard rat chow + 0.5, 2 or 3% taurine in the drinking water, respectively, in addition to PTU). Paraoxon or phenylacetate were used as substrates to measure paraoxonase and arylesterase activity, respectively. Plasma and tissue malondialdehyde (MDA) levels, indicators of lipid peroxidation, were determined using the thiobarbituric-acid reactive substances method. Serum triglyceride, total cholesterol and high-density lipoprotein,cholesterol (following precipitation with dextran sulphate,magnesium chloride) were determined using enzymatic methods. 3Serum paraoxonase and arylesterase activities were increased and plasma and tissue MDA levels and serum triglyceride levels were reduced in a dose-dependent manner in taurine-treated hypothyroid rats. Taurine concentrations were positively correlated with enzyme activities and negatively correlated with MDA and triglyceride levels. 4Further studies are needed to investigate the role of taurine supplementation in hypothyroidism in human subjects. [source]


Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus

JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
Daniel Kondziella
Abstract The proper diagnosis of the arrested or the progressive form of hydrocephalus has a critical impact on treatment, but remains difficult. The assessment of early changes in cerebral metabolism might help in the development of adequate non-invasive diagnostic tools. This study examined the alterations in label incorporation in neurotransmitter amino acids and other compounds in kaolin-induced progressive hydrocephalus in rats by means of magnetic resonance spectroscopy (MRS) combined with the administration of [1- 13C]glucose and [1,2- 13C]acetate. Some 2, 4 and 6 weeks after kaolin injection into the cisterna magna, cerebrum, brainstem and cerebellum were dissected. Interestingly, labelling of most amino acids derived from [1- 13C]glucose showed no alterations, whereas labelling from [1,2- 13C]acetate was affected. Two weeks after induction of hydrocephalus the taurine concentration was decreased, whereas the concentration of [1,2- 13C]lactate was increased in the cerebrum and that of [1,2- 13C]GABA in the brainstem. Furthermore, labelling from [1,2- 13C]acetate was significantly decreased in [4,5- 13C]glutamate, [1,2- 13C]glutamate and [1,2- 13C]GABA in cerebrum from 4 weeks after hydrocephalus induction. The concentration of N -acetylaspartate, a neuronal marker, was unchanged. However, labelling of the acetyl group from [1- 13C]glucose was decreased in cerebellum and brainstem at 6 weeks after the induction of hydrocephalus. As glucose is metabolized predominately by neurones, whereas acetate is exclusively taken up by astrocytes, these results indicate that mostly astrocytic, and only later neuronal, metabolism is disturbed in the kaolin model of hydrocephalus. If verified in patients using in vivo MRS, impaired astrocyte metabolism might serve as an early indication for operative treatment. [source]


Taurine concentrations in animal feed ingredients; cooking influences taurine content

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 7-8 2003
A. R. Spitze
Summary The aim of this study was to determine the taurine content in a variety of animal feeds. There is very little information on the taurine content of ingredients used in home-prepared diets for dogs and cats, and foods fed to wild animals in captivity. This study reports the taurine content of both common and alternative feed ingredients, and compares taurine loss as a result of different methods of food preparation. Foods were selected based on their use in commercial and home-prepared diets. Animal muscle tissue, particularly marine, contained high taurine concentrations. Plant products contained either low or undetectable amounts of taurine. The amount of taurine that remained in a feed ingredient after cooking depended upon the method of food preparation. When an ingredient was constantly surrounded by water during the cooking process, such as in boiling or basting, more taurine was lost. Food preparation methods that minimized water loss, such as baking or frying, had higher rates of taurine retention. [source]


Ethanol Enhances Taurine-Activated Glycine Receptor Function

ALCOHOLISM, Issue 9 2010
Brian T. Welsh
Background:, Emerging evidence suggests that taurine acts as a partial agonist on glycine receptors (GlyR) in vitro and in vivo. Ethanol acts as an allosteric modulator on the GlyR producing a leftward shift of the glycine concentration,response curve, with no enhancing effects observed at saturating glycine concentrations. However, to date, no electrophysiological studies have been performed on ethanol modulation of taurine-activated GlyR. Methods:, Wild-type ,1 GlyR, or those bearing a serine-267 to isoleucine replacement (S267I), were homomerically expressed in Xenopus oocytes and voltage clamped at ,70 mV. Ethanol was co-applied with varying concentrations of glycine or taurine and the enhancing effects of ethanol compared. Results:, Ethanol potentiated glycine- and taurine-activated GlyR responses in a concentration-dependent manner. It shifted taurine and glycine concentration,response curves to the left, having no effects at saturating agonist concentrations. Chelation of zinc by tricine decreased ethanol enhancement of taurine-gated GlyR function. The S267I mutation prevented ethanol enhancement of taurine-mediated responses as previously also reported for glycine. Conclusion:, Ethanol modulates taurine activation of GlyR function by a mechanism similar to that of the full agonist glycine. The lack of effect of ethanol at saturating taurine concentrations provides mechanistic information on alcohol actions at the GlyR. [source]


Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+ -coupled PAT1 (SLC36A1) and Na+ - and Cl, -dependent TauT (SLC6A6)

THE JOURNAL OF PHYSIOLOGY, Issue 4 2009
Catriona M. H. Anderson
Taurine is an essential amino acid in some mammals and is conditionally essential in humans. Taurine is an abundant component of meat and fish-based foods and has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. The purpose of this investigation was to identity the relative contributions of the solute transporters involved in taurine uptake across the luminal membrane of human enterocytes. Distinct transport characteristics were revealed following expression of the candidate solute transporters in Xenopus laevis oocytes: PAT1 (SLC36A1) is a H+ -coupled, pH-dependent, Na+ - and Cl, -independent, low-affinity, high-capacity transporter for taurine and ,-alanine; TauT (SLC6A6) is a Na+ - and Cl, -dependent, high-affinity, low-capacity transporter of taurine and ,-alanine; ATB0,+ (SLC6A14) is a Na+ - and Cl, -dependent, high-affinity, low-capacity transporter which accepts ,-alanine but not taurine. Taurine uptake across the brush-border membrane of human intestinal Caco-2 cell monolayers showed characteristics of both PAT1- and TauT-mediated transport. Under physiological conditions, Cl, -dependent TauT-mediated uptake predominates at low taurine concentrations, whereas at higher concentrations typical of diet, Cl, -independent PAT1-mediated uptake is the major absorptive mechanism. Real-time PCR analysis of human duodenal and ileal biopsy samples demonstrates that PAT1, TauT and ATB0,+ mRNA are expressed in each tissue but to varying degrees. In conclusion, this study is the first to demonstrate both taurine uptake via PAT1 and functional coexpression of PAT1 and TauT at the apical membrane of the human intestinal epithelium. PAT1 may be responsible for bulk taurine uptake during a meal whereas TauT may be important for taurine supply to the intestinal epithelium and for taurine capture between meals. [source]