Tau Phosphorylation (tau + phosphorylation)

Distribution by Scientific Domains


Selected Abstracts


A1 Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation

BRAIN PATHOLOGY, Issue 4 2003
Ester Angulo
Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimer's disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and pA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH-SY5Y cell line, agonists for A1R led to a dose-dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK-dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD. [source]


Oligodendroglial tau filament formation in transgenic mice expressing G272V tau

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2001
Jürgen Götz
Abstract Genetic evidence indicates that several mutations in tau, including G272V, are linked to frontotemporal dementia with parkinsonism. We expressed this mutation in mouse brains by combining a prion protein promoter-driven expression system with an autoregulatory transactivator loop that resulted in high expression of human G272V tau in neurons and in oligodendrocytes. We show that G272V tau can form filaments in murine oligodendrocytes. Electron microscopy established that the filaments were either straight or had a twisted structure; these were 17,20 nm wide and had a periodicity of ,,75 nm. Filament formation was associated with tau phosphorylation at distinct sites, including the AT8 epitope 202/205 in vivo. Immunogold electron microscopy of sarcosyl-extracted spinal cords from G272V transgenic mice using phosphorylation-dependent antibodies AT8 or AT100 identified several sparsely gold-labelled 6-nm filaments. In the spinal cord, fibrillary inclusions were also identified by thioflavin-S fluorescent microscopy in oligodendrocytes and motor neurons. These results establish that expression of the G272V mutation in mice causes oligodendroglial fibrillary lesions that are similar to those seen in human tauopathies. [source]


Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation

GENES, BRAIN AND BEHAVIOR, Issue 2008
K. Schindowski
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely resolution of tau pathology with hyperphosphorylation of tau at younger age (up to 6 months) and abnormal tau phosphorylation and tau aggregation in aged mice (by 10 months). Here, we present a follow-up of cell cycle markers with aging in control and transgenic mice from different ages. We show that there is an increased neurogenesis during tau hyperphosphorylation and cell cycle events during abnormal tau phosphorylation and tau aggregation preceding neuronal death and neurodegeneration. However, besides phosphorylation, other mechanisms including tau mutations and changes in tau expression and/or splicing may be also involved in these mechanisms of cell cycle reactivation. Altogether, these data suggest that cell cycle events in THY-Tau22 are resulting from neurogenesis in young animals and cell death in older ones. It suggests that neuronal cell death in such models is much more complex than believed. [source]


Neurodegeneration in an A,-induced model of Alzheimer's disease: the role of Cdk5

AGING CELL, Issue 1 2010
Joao P. Lopes
Summary Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to A, exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the A,1,40 synthetic peptide. In mice icv-injected with A,, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in A,-injected mice were prevented by blocking calpain activation with MDL28170, which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by A,. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to A, peptides in vivo, acting as a link between diverse neurotoxic pathways of AD. [source]


The ,-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the ,7 nicotinic acetylcholine receptor

JOURNAL OF NEUROCHEMISTRY, Issue 6 2007
David H. Small
Abstract Accumulation of the amyloid protein (A,) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which A, exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the ,7 nicotinic acetylcholine receptor (,7nAChR). In this study, we examined the binding of A,1-42 to endogenous and recombinantly expressed ,7nAChRs. A,1-42 did neither inhibit the specific binding of ,7nAChR ligands to rat brain homogenate or slice preparations, nor did it influence the activity of ,7nAChRs expressed in Xenopus oocytes. Similarly, A,1-42 did not compete for ,-bungarotoxin-binding sites on SH-SY5Y cells stably expressing ,7nAChRs. The effect of the A,1-42 on tau phosphorylation was also examined. Although A,1-42 altered tau phosphorylation in ,7nAChR-transfected SH-SY5Y cells, the effect of the peptide was unrelated to ,7nAChR expression or activity. Binding studies using surface plasmon resonance indicated that the majority of the A, bound to membrane lipid, rather than to a protein component. Fluorescence anisotropy experiments indicated that A, may disrupt membrane lipid structure or fluidity. We conclude that the effects of A, are unlikely to be mediated by direct binding to the ,7nAChR. Instead, we speculate that A, may exert its effects by altering the packing of lipids within the plasma membrane, which could, in turn, influence the function of a variety of receptors and channels on the cell surface. [source]


Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo

JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
Angela L. Guillozet-Bongaarts
Abstract The tangles of Alzheimer's disease (AD) are comprised of the tau protein displaying numerous alterations, including phosphorylation at serine 422 (S422) and truncation at aspartic acid 421 (D421). Truncation at the latter site appears to result from activation of caspases, a class of proteases that cleave specifically at aspartic acid residues. It has been proposed that phosphorylation at or near caspase cleavage sites could regulate the ability of the protease to cleave at those sites. Here, we use tau pseudophosphorylated at S422 (S422E) to examine the effects of tau phosphorylation on its cleavage by caspase 3. We find that S422E tau is more resistant to proteolysis by caspase 3 than non-pseudophosphorylated tau. Additionally, we use antibodies directed against the phosphorylation site and against the truncation epitope to assess the presence of these epitopes in neurofibrillary tangles in the aged human brain. We show that phosphorylation precedes truncation during tangle maturation. Moreover, the distribution of the two epitopes suggests that a significant length of time (perhaps as much as two decades) elapses between S422 phosphorylation and cleavage at D421. We further conclude that tau phosphorylation at S422 may be a protective mechanism that inhibits cleavage in vivo. [source]


Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons

JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
Qi-Wen Fan
Abstract Microtubule-associated protein 2 (MAP2) is a neuron-specific cytoskeletal protein enriched in dendrites and cell bodies. MAP2 regulates microtubule stability in a phosphorylation-dependent manner, which has been implicated in dendrite outgrowth and branching. We have previously reported that cholesterol deficiency causes tau phosphorylation and microtubule depolymerization in axons (Fan et al. 2001). To investigate whether cholesterol also modulates microtubule stability in dendrites by modulating MAP2 phosphorylation, we examined the effect of compactin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and TU-2078 (TU), a squalene epoxidase inhibitor, on these parameters using cultured neurons. We have found that cholesterol deficiency induced by compactin and TU, inhibited dendrite outgrowth, but not of axons, and attenuated axonal branching. Dephosphorylation of MAP2 and microtubule depolymerization accompanied these alterations. The amount of protein phosphatase 2 A (PP2A) and its activity in association with microtubules were decreased, while those unbound to microtubules were increased. The synthesized ceramide levels and the total ceramide content were increased in these cholesterol-deficient neurons. These alterations caused by compactin were prevented by concurrent treatment of cultured neurons with ,-migrating very-low-density lipoproteins (,-VLDL) or cholesterol. Taken together, we propose that cholesterol-deficiency causes a selective inhibition of dendrite outgrowth due to the decreased stability of microtubules as a result of inhibition of MAP2 phosphorylation. [source]


Phospholipid transfer protein reduces phosphorylation of tau in human neuronal cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2009
Weijiang Dong
Abstract Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer's disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau and increases levels of the inactive form of glycogen synthase kinase-3, (GSK3,) in HCN2 cells. Furthermore, inhibition of phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3, phosphorylated at serine 9 (pGSK3,Ser9) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), insofar as PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses the PLTP-induced increase in levels of phosphorylated Akt (pAktThr308 and pAktSer473), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons. © 2009 Wiley-Liss, Inc. [source]


Tyrosine phosphorylation of tau accompanies disease progression in transgenic mouse models of tauopathy

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 6 2010
K. Bhaskar
K. Bhaskar, G. A. Hobbs, S-H. Yen and G. Lee (2010) Neuropathology and Applied Neurobiology36, 462,477 Tyrosine phosphorylation of tau accompanies disease progression in transgenic mouse models of tauopathy Aim: Tau protein is a prominent component of paired helical filaments in Alzheimer's disease (AD) and other tauopathies. While the abnormal phosphorylation of tau on serine and threonine has been well established in the disease process, its phosphorylation on tyrosine has only recently been described. We previously showed that the Src family non-receptor tyrosine kinases (SFKs) Fyn and Src phosphorylate tau on Tyr18 and that phospho-Tyr18-tau was present in AD brain. In this study, we have investigated the appearance of phospho-Tyr18-tau, activated SFK and proliferating cell nuclear antigen (PCNA) during disease progression in a mouse model of human tauopathy. Methods: We have used JNPL3, which expresses human tau with P301L mutation, and antibodies specific for phospho-Tyr18-tau (9G3), ser/thr phosphorylated tau (AT8), activated SFK and PCNA. Antibody staining was viewed by either epifluorescence or confocal microscopy. Results: Phospho-Tyr18-tau appeared concurrently with AT8-reactive tau as early as 4 months in JNPL3. Some 9G3-positive cells also contained activated SFKs and PCNA. We also investigated the triple transgenic mouse model of AD and found that unlike the JNPL3 model, the appearance of 9G3 reactivity did not coincide with AT8 in the hippocampus, suggesting that the presence of APP/presenilin influences tau phosphorylation. Also, Thioflavin S-positive plaques were 9G3-negative, suggesting that phospho-Tyr18-tau is absent from the dystrophic neurites of the mouse triple transgenic brain. Conclusions: Our results provide evidence for the association of tyrosine-phosphorylated tau with mechanisms of neuropathogenesis and indicate that SFK activation and cell cycle activation are also involved in JNPL3. [source]


Neuropathology and Pathogenesis of Encephalitis following Amyloid , Immunization in Alzheimer's Disease

BRAIN PATHOLOGY, Issue 1 2004
Isidre Ferrer
Immunizing transgenic PDAPP mice, which overexpress mutant APP and develop ,-amyloid deposition resembling plaques in Alzheimer's disease (AD), results in a decrease of amyloid burden when compared with non treated transgenic animals im-munization with amyloid , peptide has been initiated in a randomised pilot study in AD. Yet a minority of patients developed a neurological complication consistent with meningoencephalitis and one patient died; the trial has been stopped. Neuropathological examination in that patient showed meningoencephalitis and focal atypically low numbers of diffuse and neuritic plaques but not of vascular amyloid nor regression of tau pathology in neurofibrillary tangles and neuropil threads. The present neuropathological study reports the second case of menigoencephalitis following immunization with amyloid-, peptide in AD, and has been directed toward exploring mechanisms underlying decreased tau pathology in relation- with amyliod deposit regression, and possible molecular bases involved in the inflammatory response following immunization. Inflammatory infiltrates were composed of CD8+, CD3+, CD5+ and, rarely, CD7+ lymphocytes, whereas B lymphocytes and T cytotoxic cells CD16, CD57, TIA and graenzyme were negative. Characteristic neuropathological findings were focal depletion of diffuse and neuritic plaques, but not of amyloid angiopathy, and the presence of small numbers of extremely dense(collapsed) plaques surrounded by active microglia, and multinucleated giant cells filled with dense A,42and A,40, in addition to severe small cerebral blood Reduced amyloid burden was accompanied by low amyloid-associated oxidative stress responses (reduced superoxide dismutase-1:SOD-1 expression) and by local inhibition of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 kinase which are involved in tau phosphorylation. These results support the amyloid cascade of tau phosphorylation in AD regarding phosphorylation of tau in neurofibrillary tangles and ,-amyloid deposition in neuritic plaques, but not of tau in neurofibrillary tangles and threads. Furthermore, amyloid reduction was accompanied by increased expression of the PA28,/, inductor, and of LMP7, LMP2 and MECL1 subunits of the immunopro-teasome in microglial and inflammatory cells surrounding collapsed plaques, and in multinucleated giant cells.Immunoproteasome subunit expression was accompanied by local presentation of MHC class molecules. Release of antigenic peptides derived from ,-amyloid processing may enhance T-cell inflammatory responses accounting for the meningoencephalitis following amyloid-, peptide immunization [source]


A1 Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation

BRAIN PATHOLOGY, Issue 4 2003
Ester Angulo
Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimer's disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and pA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH-SY5Y cell line, agonists for A1R led to a dose-dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK-dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD. [source]


Phosphorylated Map Kinase (ERK1, ERK2) Expression is Associated with Early Tau Deposition in Neurones and Glial Cells, but not with Increased Nuclear DNA Vulnerability and Cell Death, in Alzheimer Disease, Pick's Disease, Progressive Supranuclear Palsy and Corticobasal Degeneration

BRAIN PATHOLOGY, Issue 2 2001
I. Ferrer
Abnormal tau phosphorylation and deposition in neurones and glial cells is one of the major features in tau pathies. The present study examines the involvement of the Ras/MEK/ERK pathway of tau phosphorylation in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), by Western blotting, single and double-labelling immunohistochemistry, and p21Ras activation assay. Since this pathway is also activated in several paradigms of cell death and cell survival, activated ERK expression is also analysed with double-labelling immunohistochemistry and in situ end-labelling of nuclear DNA fragmentation to visualise activated ERK in cells with increased nuclear DNA vulnerability. The MEK1 antibody recognises one band of 45 kD that identifies phosphorylation-independent MEK1, whose expression levels are not modified in diseased brains. The ERK antibody recognises one band of 42 kD corresponding to the molecular weight of phosphorylation-independent ERK2; the expression levels, as well as the immunoreactivity of ERK in individual cells, is not changed in AD, PiD, PSP and CBD. The antibody MAPK-P distinguishes two bands of 44 kD and 42 kD that detect phosphorylated ERK1 and ERK2. MAPK-P expression levels, as seen with Western blotting, are markedly increased in AD, PiD, PSP and CBD. Moreover, immunohistochemistry discloses granular precipitates in the cytoplasm of neurones in AD, mainly in a subpopulation of neurones exhibiting early tau deposition, whereas neurones with developed neurofibrillary tangles are less commonly immunostained. MAPK-P also decorates neurones with Pick bodies in PiD, early tau deposition in neurones in PSP and CBD, and cortical achromatic neurones in CBD. In addition, strong MAPK-P immunoreactivity is found in large numbers of tau -positive glial cells in PSP and CBD, as seen with double-labelling immunohistochemistry. Yet no co-localisation of enhanced phosphorylated ERK immunoreactivity and nuclear DNA fragmentation is found in AD, PiD, PSP and CBD. Finally, activated Ras expression levels are increased in AD cases when compared with controls. These results demonstrate increased phosphorylated (active) ERK expression in association with early tau deposition in neurones and glial cells in taupathies, and suggest activated Ras as the upstream activator of the MEK/ERK pathway of tau phosphorylation in AD. [source]


REVIEW: Curcumin and Alzheimer's Disease

CNS: NEUROSCIENCE AND THERAPEUTICS, Issue 5 2010
Tsuyoshi Hamaguchi
Curcumin has a long history of use as a traditional remedy and food in Asia. Many studies have reported that curcumin has various beneficial properties, such as antioxidant, antiinflammatory, and antitumor. Because of the reported effects of curcumin on tumors, many clinical trials have been performed to elucidate curcumin's effects on cancers. Recent reports have suggested therapeutic potential of curcumin in the pathophysiology of Alzheimer's disease (AD). In in vitro studies, curcumin has been reported to inhibit amyloid-,-protein (A,) aggregation, and A,-induced inflammation, as well as the activities of ,-secretase and acetylcholinesterase. In in vivo studies, oral administration of curcumin has resulted in the inhibition of A, deposition, A, oligomerization, and tau phosphorylation in the brains of AD animal models, and improvements in behavioral impairment in animal models. These findings suggest that curcumin might be one of the most promising compounds for the development of AD therapies. At present, four clinical trials concerning the effects of curcumin on AD has been conducted. Two of them that were performed in China and USA have been reported no significant differences in changes in cognitive function between placebo and curcumin groups, and no results have been reported from two other clinical studies. Additional trials are necessary to determine the clinical usefulness of curcumin in the prevention and treatment of AD. [source]