Home About us Contact | |||
System Size (system + size)
Selected AbstractsGossip-based search selection in hybrid peer-to-peer networksCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 2 2008M. Zaharia Abstract We present GAB, a search algorithm for hybrid peer-to-peer networks, that is, networks that search using both flooding and a distributed hash table (DHT). GAB uses a gossip-style algorithm to collect global statistics about document popularity to allow each peer to make intelligent decisions about which search style to use for a given query. Moreover, GAB automatically adapts to changes in the operating environment. Synthetic and trace-driven simulations show that compared to a simple hybrid approach that always floods first, trying a DHT if too few results are found, GAB reduces the response time by 25,50% and the average query bandwidth cost by 45%, with no loss in recall. GAB scales well, with only a 7% degradation in performance despite a tripling in system size. Copyright © 2007 John Wiley & Sons, Ltd. [source] Entanglement and symmetry effects in the transition to the Schrödinger cat regimeFORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 11-12 2009F. de Pasquale Abstract We study two-spin entanglement and order parameter fluctuations as a function of the system size in the XY model in a transverse field and in the isotropic XXX model. Both models are characterized by the occurrence of ground state degeneracy also when systems of finite size are considered. This is always true for the XXX model, but only at the factorizing field for the XY model. We study the size dependence of symmetric states, which, in the presence of degeneracy, can be expanded as a linear combination of broken symmetry states. We show that, while the XY model looses its quantum superposition content exponentially with the size N, a decrease of the order of 1 / N is observed when the XXX model is considered. The emergence of two qualitatively different regimes is directly related to the difference in the symmetry of the models. [source] A dual mortar approach for 3D finite deformation contact with consistent linearizationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2010Alexander Popp Abstract In this paper, an approach for three-dimensional frictionless contact based on a dual mortar formulation and using a primal,dual active set strategy for direct constraint enforcement is presented. We focus on linear shape functions, but briefly address higher order interpolation as well. The study builds on previous work by the authors for two-dimensional problems. First and foremost, the ideas of a consistently linearized dual mortar scheme and of an interpretation of the active set search as a semi-smooth Newton method are extended to the 3D case. This allows for solving all types of nonlinearities (i.e. geometrical, material and contact) within one single Newton scheme. Owing to the dual Lagrange multiplier approach employed, this advantage is not accompanied by an undesirable increase in system size as the Lagrange multipliers can be condensed from the global system of equations. Moreover, it is pointed out that the presented method does not make use of any regularization of contact constraints. Numerical examples illustrate the efficiency of our method and the high quality of results in 3D finite deformation contact analysis. Copyright © 2010 John Wiley & Sons, Ltd. [source] Performance analysis of a modified two-bed solar-adsorption air-conditioning systemINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2009K. Sumathy Abstract This paper presents the description and operation of a solar-powered modified two-bed adsorption air-conditioning system with activated carbon and methanol as the working pair. A simple lumped parameter model is established to investigate the performance of this continuous adsorption cycle consisting of a twin adsorber immersed in water tanks, which is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. In addition, the influence of some important design and operational parameters on the performance of the system has been studied. Compared with the conventional system, it is found that the modified system can operate more cycles and at a higher efficiency. The parametric study also shows that the adsorbent mass and the solar collector area have significant effect on the system performance as well as on the system size. Finally, when the system uses gas heater as an auxiliary heat source, it is found that the system can provide a stable cooling effect for a longer period of operation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Two-Level Security Management and the Prospects for New Democracies: A Simulation AnalysisINTERNATIONAL STUDIES QUARTERLY, Issue 3 2000Marc V. Simon Most new democracies face serious internal, ethnic/separatist conflicts; in addition, some face international threats. The literature on the growth of democracy in the global system and its impact on world politics does not fully account for the dual threats all states must address in managing their security. Based on theoretical work by Starr (1994) which describes the "common logic" of conflict processes in war and revolution, we outline a model of how states respond to security threats from both external and internal sources. Using computer simulation, we analyze the model and evaluate the relative importance for state security of factors such as system size, numbers of democracies in the system, extraction/allocation strategy pursued by new democracies, and government legitimacy level. Our results show that new democracies thrive in systems that are predominantly democratic. Also, ally support can provide crucial resources for new democracies facing internal threats. Finally, "endangered" democracies can recover security by attempting to buy off domestic threats rather than deter them, and by improving legitimacy. [source] Root competition: beyond resource depletionJOURNAL OF ECOLOGY, Issue 4 2006H. JOCHEN SCHENK Summary 1Root competition is defined as a reduction in the availability of a soil resource to roots that is caused by other roots. Resource availability to competitors can be affected through resource depletion (scramble competition) and by mechanisms that inhibit access of other roots to resources (contest competition, such as allelopathy). 2It has been proposed that soil heterogeneity can cause size-asymmetric root competition. Support for this hypothesis is limited and contradictory, possibly because resource uptake is affected more by the amount and spatial distribution of resource-acquiring organs, relative to the spatial distribution of resources, than by root system size per se. 3Root competition intensity between individual plants generally decreases as resource availability (but not necessarily habitat productivity) increases, but the importance of root competition relative to other factors that structure communities may increase with resource availability. 4Soil organisms play important, and often species-specific, roles in root interactions. 5The findings that some roots can detect other roots, or inert objects, before they are contacted and can distinguish between self and non-self roots create experimental challenges for those attempting to untangle the effects of self/non-self root recognition, self-inhibition and root segregation or proliferation in response to competition. Recent studies suggesting that root competition may represent a ,tragedy-of-the-commons' may have failed to account for this complexity. 6Theories about potential effects of root competition on plant diversity (and vice versa) appear to be ahead of the experimental evidence, with only one study documenting different effects of root competition on plant diversity under different levels of resource availability. 7Roots can interact with their biotic and abiotic environments using a large variety of often species-specific mechanisms, far beyond the traditional view that plants interact mainly through resource depletion. Research on root interactions between exotic invasives and native species holds great promise for a better understanding of the way in which root competition may affect community structure and plant diversity, and may create new insights into coevolution of plants, their competitors and the soil community. [source] Lack of relationship between below-ground competition and allocation to roots in 10 grassland speciesJOURNAL OF ECOLOGY, Issue 4 2003James F. Cahill Jr Summary 1A field experiment in a native grassland in Central Alberta, Canada, tested whether plants alter relative allocation to roots vs. shoots in response to below-ground competition, and whether the mass of a species' root system accounts for interspecific differences in below-ground competitive response. 2Seedlings of each of 10 native species were transplanted into the naturally occurring vegetation in the field at the start of the growing season. Root interactions between the target plants and their neighbours were manipulated through the use of PVC root exclusion tubes, with target plants grown with or without potential root interactions with their neighbours. Neighbour shoots were also tied back, forcing any target,neighbour interactions to be below ground. 3Below-ground competition generally reduced plant growth, with its relative magnitude varying among species. 4An allometric analysis indicated that competition below ground did not result in an increase in the relative biomass allocated to roots for any of the 10 target species. This is counter to the growth-balance hypothesis (and optimal foraging theory). Below-ground competition did increase root : shoot ratios, but this was due to reduced plant size (small plants have larger root : shoot ratios), rather than adaptive plasticity. 5A species' below-ground competitive ability was not related to its root system size. Although this finding is counter to commonly made assumptions, it is supported by other work demonstrating below-ground competition to be generally size-symmetric. 6Despite the majority of plant,plant interactions in grasslands being below ground, our understanding of plant competition above ground is significantly more robust. Several wide-spread assumptions regarding below-ground competition are suspect, and more multispecies studies such as this are required to provide a fuller picture of how plants respond to, and compete for, soil resources. [source] A Parallelised High Performance Monte Carlo Simulation Approach for Complex Polymerisation KineticsMACROMOLECULAR THEORY AND SIMULATIONS, Issue 6 2007Hugh Chaffey-Millar Abstract A novel, parallelised approach to Monte Carlo simulations for the computation of full molecular weight distributions (MWDs) arising from complex polymerisation reactions is presented. The parallel Monte Carlo method constitutes perhaps the most comprehensive route to the simulation of full MWDs of multiple chain length polymer entities and can also provide detailed microstructural information. New fundamental insights have been developed with regard to the Monte Carlo process in at least three key areas: (i) an insufficient system size is demonstrated to create inaccuracies via poor representation of the most improbable events and least numerous species; (ii) advanced algorithmic principles and compiler technology known to computer science have been used to provide speed improvements and (iii) the parallelisability of the algorithm has been explored and excellent scalability demonstrated. At present, the parallel Monte Carlo method presented herein compares very favourably in speed with the latest developments in the h-p Galerkin method-based PREDICI software package while providing significantly more detailed microstructural information. It seems viable to fuse parallel Monte Carlo methods with those based on the h-p Galerkin methods to achieve an optimum of information depths for the modelling of complex macromolecular kinetics and the resulting microstructural information. [source] Conductance of inhomogeneous systems: Real-time dynamicsANNALEN DER PHYSIK, Issue 9 2010A. Branschädel Numerical time evolution of transport states using time dependent Density Matrix Renormalization Group (td-DMRG) methods has turned out to be a powerful tool to calculate the linear and finite bias conductance of interacting impurity systems coupled to non-interacting one-dimensional leads. Several models, including the Interacting Resonant Level Model (IRLM), the Single Impurity Anderson Model (SIAM), as well as models with different multi site structures, have been subject of investigations in this context. In this work we give an overview of the different numerical approaches that have been successfully applied to the problem and go into considerable detail when we comment on the techniques that have been used to obtain the full I,V-characteristics for the IRLM. Using a model of spinless fermions consisting of an extended interacting nanostructure attached to non-interacting leads, we explain the method we use to obtain the current,voltage characteristics and discuss the finite size effects that have to be taken into account. We report results for the linear and finite bias conductance through a seven site structure with weak and strong nearest-neighbor interactions. Comparison with exact diagonalisation results in the non-interacting limit serve as a verification of the accuracy of our approach. Finally we discuss the possibility of effectively enlarging the finite system by applying damped boundaries and give an estimate of the effective system size and accuracy that can be expected in this case. [source] Entanglement of spin chains with general boundaries and of dissipative systemsANNALEN DER PHYSIK, Issue 7-8 2009T. Stauber Abstract We analyze the entanglement properties of spins (qubits) close to the boundary of spin chains in the vicinity of a quantum critical point and show that the concurrence at the boundary is significantly different from the one of bulk spins. We also discuss the von Neumann entropy of dissipative environments in the vicinity of a (boundary) critical point, such as two Ising-coupled Kondo-impurities or the dissipative two-level system. Our results indicate that the entanglement (concurrence and/or von Neumann entropy) changes abruptly at the point where coherent quantum oscillations cease to exist. The phase transition modifies significantly less the entanglement if no symmetry breaking field is applied and we argue that this might be a general property of the entanglement of dissipative systems. We finally analyze the entanglement of an harmonic chain between the two ends as function of the system size. [source] Entanglement of spin chains with general boundaries and of dissipative systemsANNALEN DER PHYSIK, Issue 7-8 2009T. Stauber Abstract We analyze the entanglement properties of spins (qubits) close to the boundary of spin chains in the vicinity of a quantum critical point and show that the concurrence at the boundary is significantly different from the one of bulk spins. We also discuss the von Neumann entropy of dissipative environments in the vicinity of a (boundary) critical point, such as two Ising-coupled Kondo-impurities or the dissipative two-level system. Our results indicate that the entanglement (concurrence and/or von Neumann entropy) changes abruptly at the point where coherent quantum oscillations cease to exist. The phase transition modifies significantly less the entanglement if no symmetry breaking field is applied and we argue that this might be a general property of the entanglement of dissipative systems. We finally analyze the entanglement of an harmonic chain between the two ends as function of the system size. [source] Towards a more realistic comparative analysis of multicomputer networksCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 13 2004H. Sarbazi-Azad Abstract Several studies have examined the relative performance merits of the torus and hypercube taking into account the channel bandwidth constraints imposed by implementation technology. While the torus has been shown to outperform the hypercube under the constant wiring density constraint, the opposite conclusion has been reached when the constant pin-out constraint is considered. However, these studies have assumed a pure uniform traffic pattern and deterministic routing. The ,uniform traffic' assumption is not always justifiable in practice as there are many real-world parallel applications that exhibit non-uniform traffic patterns, which can create unbalanced traffic such as hotspots in the network. This paper re-examines the performance merits of the torus and hypercube in the presence of hotspot traffic. The comparative analysis is based on fully adaptive routing as this has been gaining popularity in recent practical multicomputers. Moreover, it uses a new cost model that takes into account the implementation cost of the network and its routers. The results reveal that for moderate and large system sizes, lower dimensional k -ary n -cubes (e.g. 2D torus) always outperform their higher dimensional counterparts even under the pin-out constraint. Copyright © 2004 John Wiley & Sons, Ltd. [source] Charge parameterization of the metal centers in cytochrome c oxidaseJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 5 2008Mikael P. Johansson Abstract Reliable atomic point charges are of key importance for a correct description of the electrostatic interactions when performing classical, force field based simulations. Here, we present a systematic procedure for point charge derivation, based on quantum mechanical methodology suited for the systems at hand. A notable difference to previous procedures is to include an outer region around the actual system of interest. At the cost of increasing the system sizes, here up to 265 atoms, including the surroundings achieves near-neutrality for the systems as well as structural stability, important factors for reliable charge distributions. In addition, the common problem of converting between CH bonds and CC bonds at the border vanishes. We apply the procedure to the four redox-active metal centers of cytochrome c oxidase: CuA, haem a, haem a3, and CuB. Several relevant charge and ligand states are considered. Charges for two different force fields, CHARMM and AMBER, are presented. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008 [source] |