Home About us Contact | |||
System Models (system + models)
Selected AbstractsEffects of amino nitrogen on fermentation parameters by mixed ruminal microbes when energy or nitrogen is limitedANIMAL SCIENCE JOURNAL, Issue 2 2007Hiroshi KAJIKAWA ABSTRACT Ruminal microbes harvested from a ruminally fistulated cow were incubated in simple batch and semicontinuous cultures with NH3 -N or amino-N on nitrogen- or energy-excess diets in quantity (HN and LN diets, respectively, consisting of timothy hay plus soybean meal, or corn grain), based on evaluation with the National Research Council and Cornell Net Carbohydrate and Protein System models. In a batch culture experiment, supplementation with amino-N promoted digestion and fermentation in the course of incubation (4,24 h) on both diets, but these effects mostly disappeared when the diets were sufficiently digested (at 48 h). In a semicontinuous culture experiment using Rusitec, no effect of amino-N was exhibited after sufficient fermentation and digestion, but significant promotion of digestion was shown in the course of incubation on the HN diet, while no such effect was detected on the LN diet. The microbial yield for 24 h did not show a significant difference between the N sources of either of the two diets. These results suggest that the stimulatory effects of amino-N are diminished when the diets are sufficiently digested after a long retention and incubation, and also that the effectiveness of amino-N does not require a quantitatively energy-excess status. [source] Susceptibility of a Northern Hardwood Forest to Exotic Earthworm InvasionCONSERVATION BIOLOGY, Issue 4 2005MICHAEL J. GUNDALE Acer saccharum; Bosque Nacional Ottawa; lombrices invasoras; Sylvania Wilderness Area; uso del suelo Abstract:,Numerous exotic earthworm species are colonizing northern hardwood forests of North America, where no native earthworms exist. Upon invasion, earthworms have been shown to alter the surface soil environment and plant populations and communities. We sought to identify land-use factors in the Ottawa National Forest (ONF), Michigan (U.S.A.), that contribute to earthworm invasion in forest dominated by sugar maple (Acer saccharum Marsh.) so that the susceptibility to additional colonization could be evaluated. We sampled earthworm communities in Sylvania Wilderness Area, a unique old-growth hardwood forest, and nonwilderness sites influenced by recreational fishing, recent timber harvesting, or roads. All the nonwilderness sites contained one to five species of exotic earthworms. In contrast, only 50% of wilderness sites contained exotic earthworms, all of a single species. Nonwilderness sites also had thinner litter and duff layers, higher soil C and N content, and higher nitrogen mineralization potentials than Sylvania sites. Two central differences between Sylvania and nonwilderness sites were that all nonwilderness sites were in close contact with roads and had a history of timber harvest, whereas these factors were not present in Sylvania Wilderness Area. Using average rates of colonization, we constructed two geographic information system models to estimate the percentage of sugar maple on the ONF falling within a theoretical 100-year invasion distance of roads and of second-growth sugar maple as relative indices of susceptibility to invasion. Both models indicated high susceptibility to invasion, with 91.7% and 98.9% of sugar maple habitat falling within a theoretical 100-year invasion distance of roads or historical harvests, respectively. Resumen:,Numerosas especies de lombrices exóticas están colonizando los bosques boreales, en los que previamente no existían lombrices terrestres nativas. Por encima de la invasión, se ha demostrado que las lombrices alteran el ambiente superficial del suelo, así como a las comunidades y poblaciones de plantas. Tratamos de identificar factores de uso del suelo en el Bosque Nacional Ottawa (BNO), Michigan, E. U. A., que contribuyen a la invasión de lombrices en bosques dominados por arces (Acer saccharum Marsh.), para poder evaluar la susceptibilidad a futuras invasiones. Muestreamos comunidades de lombrices en Sylvania Wilderness Area, un bosque maduro único, y en sitios no silvestres influenciados por pesca deportiva, cosecha reciente de madera o caminos. Todas las áreas no silvestres contenían 1 - 5 especies de lombrices exóticas. En contraste, solo 50% de los sitios silvestres contenían lombrices exóticas, todas de una sola especie. Los sitios no silvestres también tenían capas de hojarasca y de mantillo más delgadas, mayor contenido de C y N del suelo y mayor potencial de mineralización del nitrógeno que los sitios en Sylvania. Dos diferencias centrales entre Sylvania y los sitios no silvestres fueron que estos estaban en contacto cercano con caminos y tenían una historia de cosecha de madera, mientras que estos factores no estuvieron presentes en Sylvania Wilderness Area. Utilizando tasas promedio de colonización, construimos dos modelos de sistemas de información geográfica para estimar el porcentaje de arces en el BNO que queda a una distancia teórica de invasión en 100 años; con caminos y arce de crecimiento secundario como índices relativos de susceptibilidad a la invasión. Ambos modelos indicaron alta susceptibilidad a la invasión, con 91.7% y 98.9% del hábitat de arce dentro de la distancia teórica de invasión en 100 años o con cosechas históricas, respectivamente. [source] Dynamic COI-tracking concept for the control of generators in multi-machine power systemsEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 1 2008Zhou Lan Abstract In the conventional excitation control concept, the power angle and frequency of a generator are driven to a pre-designed operation point after the fault occurs. It is named as Constant Point Stabilization (CPS) concept in this paper. A novel concept, called dynamic Center of Inertia (COI)-tracking concept is proposed in this paper. In the concept, the power angle and frequency of each generator track the dynamic COI of the power system. Compared to CPS concept, a salient feature the suggested dynamic COI-tracking concept has is that the generators are not restricted to constant angle point or frequency any longer but track the dynamic COI trajectory of the system to keep synchronous in rotor angle and frequency. Wide area measurement system (WAMS) will be used to transform COI signals to each generator. The time delay within a certain limit of WAMS signals is permitted. To make comparison between the two concepts, the control system models based on the two concepts are first established. Then, using the back-stepping method, two robust controllers are designed to achieve the control objectives of the two concepts. At last, dynamic simulations are carried out based on a 2-area-4-machine test power system, and the control effects of the two controllers, together with that of the conventional AVR,+,PSS excitation system, are compared. Copyright © 2007 John Wiley & Sons, Ltd. [source] Integrated models of livestock systems for climate change studies.GLOBAL CHANGE BIOLOGY, Issue 2 2001Summary The potential impact of climate change by the year 2050 on intensive livestock systems in Britain is assessed through the use of simulation models of farming systems. The submodels comprise livestock feeding, livestock thermal balance and the thermal balance of controlled environment buildings and a stochastic weather generator. These are integrated to form system models for growing pigs and broiler chickens. They are applied to scenarios typical of SE England, which is the warmest region of the country and represents the worst case. For both species the frequency of severe heat stress is substantially increased, with a consequent risk of mortality. To offset this, it would be necessary to reduce stocking densities considerably, or to invest in improved ventilation or cooling equipment. Other effects on production are likely to be small. [source] A new saturated/unsaturated model for stormwater infiltration systemsHYDROLOGICAL PROCESSES, Issue 25 2008Dale Browne Abstract Infiltration systems are widely used as an effective urban stormwater control measure. Most design methods and models roughly approximate the complex physical flow processes in these systems using empirical equations and fixed infiltration rates to calculate emptying times from full. Sophisticated variably saturated flow models are available, but rarely applied owing to their complexity. This paper describes the development and testing of an integrated one-dimensional model of flow through the porous storage of a typical infiltration system and surrounding soils. The model accounts for the depth in the storage, surrounding soil moisture conditions and the interaction between the storage and surrounding soil. It is a front-tracking model that innovatively combines a soil-moisture-based solution of Richard's equation for unsaturated flow with piston flow through a saturated zone as well as a reservoir equation for flow through a porous storage. This allows the use of a simple non-iterative numerical solution that can handle ponded infiltration into dry soils. The model is more rigorous than approximate stormwater infiltration system models and could therefore be valuable in everyday practice. A range of test cases commonly used to test soil water flow models for infiltration in unsaturated conditions, drainage from saturation and infiltration under ponded conditions were used to test the model along with an experiment with variable depth in a porous storage over saturated conditions. Results show that the model produces a good fit to the observed data, analytical solutions and Hydrus. Copyright © 2008 John Wiley & Sons, Ltd. [source] Adaptive control for non-negative and compartmental dynamical systems with applications to general anesthesiaINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 3 2003Wassim M. Haddad Abstract Non-negative and compartmental dynamical system models are composed of homogeneous interconnected subsystems or compartments which exchange variable non-negative quantities of material with conservation laws describing transfer, accumulation, and elimination between the compartments and the environment. These models are widespread in biological and physiological sciences and play a key role in understanding these processes. In this paper, we develop a direct adaptive control framework for linear uncertain non-negative and compartmental systems. The proposed framework is Lyapunov-based and guarantees partial asymptotic set-point regulation; that is, asymptotic set-point stability with respect to part of the closed-loop system states associated with the plant. In addition, the adaptive controller guarantees that the physical system states remain in the non-negative orthant of the state space. Finally, a numerical example involving the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for non-cardiac surgery is provided to demonstrate the efficacy of the proposed approach. Copyright © 2003 John Wiley & Sons, Ltd. [source] Discrimination of dynamical system models for biological and chemical processesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2007Sönke Lorenz Abstract In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [source] Myotonic dystrophy 1 in the nervous system: From the clinic to molecular mechanismsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2008Mario Bermúdez de León Abstract Myotonic dystrophy type 1 (DM1) is a dominant neuromuscular disorder caused by the expansion of trinucleotide CTG repeats in the 3,-untranslated region (3,-UTR) of the DMPK gene. Prominent features of classical DM1 are muscle wasting and myotonia, whereas mental retardation is distinctive for congenital DM1. The main nervous system symptoms of DM1 are cognitive impairment, neuroendocrine dysfunction, and personality and behavior abnormalities. It is thought that expansion of CTG repeats causes DM1 pathology through different molecular mechanisms; however, a growing body of evidence indicates that an RNA gain-of-function mechanism plays a major role in the disease development. At the skeletal muscle level, three main molecular events can be distinguished in this model: 1) formation of nuclear foci that are composed at least of mutant DMPK mRNA and recruited RNA-binding proteins, such as splicing regulators and transcription factors; 2) disturbance of alternative splicing of specific genes; and 3) impairment of cell differentiation. Contrasting with the substantial advances in understanding DM1 muscle pathology, the molecular basis of DM1 in the nervous system has just started to be revealed. This review focuses in the DM1 nervous system pathology and provides an overview of the genetic and molecular studies analyzing the effects of the DMPK gene CUG expanded repeats on cell function in neuronal systems. A comparison between the molecular mechanisms of DM1 in the skeletal muscle and those identified in DM1 nervous system models is provided. Finally, future directions in the study of DM1 in the nervous system are discussed. © 2007 Wiley-Liss, Inc. [source] Scaling of chew cycle duration in primatesAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2009Callum F. Ross Abstract The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass,spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but isrejected as biomechanically unrealistic. The forced mass,spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source] Commercial Insurance vs Community-based Health Plans: Time for a Policy Option With Clinical Emphasis to Address the Cost SpiralTHE JOURNAL OF RURAL HEALTH, Issue 2 2005Bruce Amundson MD ABSTRACT: The nation continues its ceaseless struggle with the spiraling cost of health care. Previous efforts (regulation, competition, voluntary action) have included almost every strategy except clinical. Insurers have largely failed in their cost-containment efforts. There is a strong emerging body of literature that demonstrates the relationship between various clinical strategies and reductions in utilization and costs. This article describes the organization of health services, including integration of delivery and financing systems, at the community level as a model that effectively addresses the critical structural flaws that have frustrated control of costs. Community-based health plans (CHPs) have been developed and have demonstrated viability. The key elements of CHPs are a legal organizational structure, a full provider network, advanced care-management systems, and the ability to assume financial risk. Common misconceptions regarding obstacles to CHP development are the complexity of the undertaking, difficulty assuming the insurance function, and insured pools that are too small to be viable. The characteristics of successful CHPs and 2 case studies are described, including the types of advanced care-management systems that have resulted in strong financial performance. The demonstrated ability of CHPs to establish financial viability with small numbers of enrollees challenges the common assumption that there is a fixed relationship between health plan enrollment size and financial performance. Organizing the health system at the community/regional level provides an attractive alternative model in the health-reformdebate. There is an opportunity for clinical systems and state and federal leaders to support the development of community-based integrated delivery and financing system models that, among other advantages, have significant potential to modulate the pernicious cost spiral. [source] Systems approaches to beef cattle production systems using modeling and simulationANIMAL SCIENCE JOURNAL, Issue 4 2010Hiroyuki HIROOKA ABSTRACT Systems approach techniques have been applied to modeling production systems for beef cattle from the relatively micro-level of tissues and organs to the macro-level of farms and geographical regions. This paper reviews the various types of beef cattle production models already in operation in order to analyze beef cattle production systems and their components. It may be theoretically possible to construct system models which describe such complex production systems and can be generally used in various genetic, nutritional, management and economic situations as well as in training, extension and educational programs. Moreover, the systems approach can assist in the organization of information and identification of knowledge gaps and thereby open an avenue to multi-disciplinary research projects. [source] A structured and dynamic framework to advance traits-based theory and prediction in ecologyECOLOGY LETTERS, Issue 3 2010Colleen T. Webb Ecology Letters (2010) 13: 267,283 Abstract Predicting changes in community composition and ecosystem function in a rapidly changing world is a major research challenge in ecology. Traits-based approaches have elicited much recent interest, yet individual studies are not advancing a more general, predictive ecology. Significant progress will be facilitated by adopting a coherent theoretical framework comprised of three elements: an underlying trait distribution, a performance filter defining the fitness of traits in different environments, and a dynamic projection of the performance filter along some environmental gradient. This framework allows changes in the trait distribution and associated modifications to community composition or ecosystem function to be predicted across time or space. The structure and dynamics of the performance filter specify two key criteria by which we judge appropriate quantitative methods for testing traits-based hypotheses. Bayesian multilevel models, dynamical systems models and hybrid approaches meet both these criteria and have the potential to meaningfully advance traits-based ecology. [source] Pricing of Forward and Futures ContractsJOURNAL OF ECONOMIC SURVEYS, Issue 2 2000Ying-Foon Chow There has long been substantial interest in understanding the relative pricing of forward and futures contracts. This has led to the development of two standard theories of forward and futures pricing, namely, the Cost-of-Carry and the Risk Premium (or Unbiased Expectations) hypotheses. These studies have modelled the relationship between spot and forward/futures prices either through a no-arbitrage condition or a general equilibrium setting. Relatively few studies in this area have considered the impact of stochastic trends in the data. With the emergence of non-stationarity and cointegration in recent years, more sophisticated models of futures/forward prices have been specified. This paper surveys the significant contributions made to the literature on the pricing of forward/futures contracts, and examines recent empirical studies pertaining to the estimation and testing of univariate and systems models of futures pricing. [source] |