System Capacity (system + capacity)

Distribution by Scientific Domains


Selected Abstracts


Performance analysis of microcell/macrocell with reuse partitioning in TDMA-based cellular systems

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2008
Jane Y. Yu
Abstract System capacity and grade of service (GoS) are both important for the rapid growth of cellular communication services. In this paper, we propose a two-tier TDMA-based cellular system with macrocell overlaid on microcell clusters by implementing fixed channel assignment (FCA) scheme and fixed reuse partitioning (FRP) scheme in microcell layer and macrocell layer, respectively, named FCA,FRP overlay scheme. Improvement can be achieved in both system capacity and GoS. Theoretical analysis based on the overlay scheme without overflow and with overflow is first presented. It shows that the simulation results are agreed with the analytical results. Then, simulation results, obtained from the overlay scheme with and without overflow, show that the performance in terms of the call blocking probability, the call dropping probability and system capacity of such a system can be greatly improved compared with a conventional one-tier cellular system deployed with FCA or FRP scheme. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Assessment of the access selection gain in multi-radio access networks

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 3 2009
Joachim Sachs
In this paper, we investigate the capacity gain of access selection in a multi-radio access network with heterogeneous radio access technologies (RATs). We classify the kinds of gain that can be achieved by access selection: statistical multiplexing in the multi-access system leads to a trunking gain, spatial transmission diversity results from the geographic capacity distribution of the cell layout, stochastic transmission diversity exploits the multi-path fading characteristics. We show how these different properties are affected by the cell layout of the different RATs, the characteristics of each RAT and the traffic load distribution in the network. In a simulation environment the system capacity for the combination of two wide-area access technologies, as well as, for the combination of a wide-area and a local-area access technology is investigated. For this, we compare two different access selection algorithms. One uses the radio link quality as an input parameter, while the other also considers the cell load. We derive quantitative figures for the capacity gain in a large number of scenarios and show that load-based access selection can significantly increase the capacity. We show that the gain of an overlay of local-area access cells provides little capacity gain for uniform geographic load distribution, whereas significant gain can be achieved when most users are located at hotspots. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Broadband wireless access based on VSF-OFCDM and VSCRF-CDMA and its experiments

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 3 2004
Hiroyuki Atarashi
This paper presents broadband packet wireless access schemes based on variable spreading factor (VSF)-orthogonal frequency and code division multiplexing (OFCDM) in the downlink and variable spreading and chip repetition factors (VSCRF)-CDMA in the uplink for the systems beyond IMT-2000. In our design concept for wireless access in both links, radio parameters such as the spreading factor (SF) are optimally controlled so that the system capacity is maximized according to the cell configuration, channel load and radio channel conditions, based on the tradeoff between efficient suppression of other-cell interference and the capacity increase in the target cell by exploiting orthogonality in the time and frequency domains. We demonstrate that the peak throughput of greater than 100,Mbps and 20,Mbps is achieved by the implemented base station and mobile station transceivers using the 100-MHz and 40-MHz bandwidths in the downlink and uplink respectively. Moreover, the simulation results show the possibility of the peak throughput of approximately 1,Gbps for short-range area applications using the 100-MHz bandwidth OFCDM downlink by applying four-branch multiple input multiple output (MIMO) multiplexing with 16,QAM data modulation and punctured turbo coding. Copyright © 2004 AEI [source]


Performance analysis of microcell/macrocell with reuse partitioning in TDMA-based cellular systems

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2008
Jane Y. Yu
Abstract System capacity and grade of service (GoS) are both important for the rapid growth of cellular communication services. In this paper, we propose a two-tier TDMA-based cellular system with macrocell overlaid on microcell clusters by implementing fixed channel assignment (FCA) scheme and fixed reuse partitioning (FRP) scheme in microcell layer and macrocell layer, respectively, named FCA,FRP overlay scheme. Improvement can be achieved in both system capacity and GoS. Theoretical analysis based on the overlay scheme without overflow and with overflow is first presented. It shows that the simulation results are agreed with the analytical results. Then, simulation results, obtained from the overlay scheme with and without overflow, show that the performance in terms of the call blocking probability, the call dropping probability and system capacity of such a system can be greatly improved compared with a conventional one-tier cellular system deployed with FCA or FRP scheme. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Joint packet scheduling and dynamic base station assignment for CDMA data networks

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 2 2008
Christian Makaya
Abstract In current code division multiple access (CDMA) based wireless systems, a base station (BS) schedules packets independently of its neighbours, which may lead to resource wastage and the degradation of the system's performance. In wireless networks, in order to achieve an efficient packet scheduling, there are two conflicting performance metrics that have to be optimized: throughput and fairness. Their maximization is a key goal, particularly in next-generation wireless networks. This paper proposes joint packet scheduling and BS assignment schemes for a cluster of interdependent neighbouring BSs in CDMA-based wireless networks, in order to enhance the system performance through dynamic load balancing. The proposed schemes are based on sector subdivision in terms of average required resource per mobile station and utility function approach. The fairness is achieved by minimizing the variance of the delay for the remaining head-of-queue packets. Inter-cell and intra-cell interferences from scheduled packets are also minimized in order to increase the system capacity and performance. The simulation results show that our proposed schemes perform better than existing schemes available in the open literature. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Refrigeration plant exergetic analysis varying the compressor capacity

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2003
C. Aprea
Abstract The paper presents an exergetic analysis of a vapour compressor refrigeration plant when the refrigeration capacity is controlled by varying the compressor speed. The aim is performance evaluation of both the whole plant and its individual components. The analysis of the exergy flow destroyed in each device of the plant varying the compressor speed has been carried out in order to determine the relative irreversibility of the plant components. The vapour compression plant is subjected to a commercially available cold store. The compressor working with R22, R407C and R507 and designed for a revolution speed corresponding to 50 Hz supply current frequency, has been used varying the frequency in the range 30,50 Hz. In this range, the most suitable working fluids proposed as substitutes of R22, as R407C (R32/R125/R134a 23/25/52% in mass), R507 (R125/R143A 50/50% in mass) and R417A (R125/R134a/R600 46.6/50/3.4% in mass), have been tested. The variable-speed compressor is fitted with a pulse-width modulated source inverter (PWM) predominantly used in medium power applications due to its relatively low cost and high efficiency. The basic difference between variable speed refrigeration and conventional refrigeration systems is in the control of the system capacity at part-load conditions. The conventional refrigeration systems are characterized by compressor on/off cycles arising from by the thermostatic control. On the contrary when the inverter is used the capacity of the refrigeration system is matched to the load regulating the compressor motor speed. When the control of the compressor capacity is obtained by varying its speed there is an energy saving with respect to the thermostatic control. The best results of the exergetic analysis have been obtained using R22 followed by the non-azeotropic mixture designed as R407C that confirms, among the fluid candidates R22 substitution a better performance, shown also at the compressor nominal speed. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Channel estimation and physical layer adaptation techniques for satellite networks exploiting adaptive coding and modulation

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2008
Stefano Cioni
Abstract The exploitation of adaptive coding and modulation techniques for broadband multi-beam satellite communication networks operating at Ka-band and above has been shown to theoretically provide large system capacity gains. In this paper, the problem of how to accurately estimate the time-variant channel and how to adapt the physical layer taking into account the effects of estimator errors and (large) satellite propagation delays is analyzed, and practical solutions for both the forward and the reverse link are proposed. A novel pragmatic solution to the reverse link physical layer channel estimation in the presence of time-variant bursty interference has been devised. Physical layer adaptation algorithms jointly with design rules for hysteresis thresholds have been analytically derived. The imperfect physical layer channel estimation impact on the overall system capacity has been finally derived by means of an original semi-analytical approach. Through comprehensive system simulations for a realistic system study case, it is showed that the devised adaptation algorithms are able to successfully track critical Ka-band fading time series with a limited impact on the system capacity while satisfying the link outage probability requirement. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Interference evaluations and simulations for multisatellite multibeam systems

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 4 2002
Pierpaolo Loreti
Third generation communication systems will be characterized by full integration between terrestrial and satellite components. To this aim, global coverage along with not severe requirements for user terminals are mandatory for the satellite segment and the use of constellations of satellites in low or medium Earth orbits (LEO or MEO) seems to be a viable solution. Those satellite systems will adopt multibeam antennas to achieve high spectral efficiency and low-cost terminals. Thus, interference becomes one of the most limiting factors in terms of both link availability and capacity. The paper presents a more complete interference model than previously published in literature. The identification of the interfering users set has been introduced and all the factors impacting interference generation or isolation have been considered in case of both FDMA and CDMA access. This model is suitable for instantaneous analysis of multisatellite constellations. It has been implemented and time-domain simulations have been performed to evaluate the impairments due to co-channel interference for different access techniques for LEO configuration. Simulation results on interference and users spatial distribution, on trade-offs between interference and system capacity will be presented. Finally, the main interference mitigation techniques will be listed and discussed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Design aspects of satellite,cellular hybrid wireless systems

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2002
Tamer ElBatt
Abstract In this paper we investigate various issues related to the design of satellite,cellular hybrid systems. First, we review the fundamental problems of channel partitioning and call admission/assignment. Second, we study the impact of different frequency reuse constraints, in both layers, on the optimum channel partitioning. Third, we investigate, analytically and via simulation, the effect of reducing the cell size. We emphasize the blocking-forced termination probabilities trade-off for pure cellular and satellite,cellular hybrid systems. Accordingly, an optimization problem with respect to the cell size is formulated. Finally, we search for the optimum dynamic call re-assignment policy that improves the system capacity at the expense of the complexity associated with tearing down a connection in one system and setting-up an alternative one in the other system. For a small hybrid system, we characterized the optimum re-assignment policies that minimize the blocking probability, dropping probability, and a weighted cost function of these probabilities. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Resource management model and performance evaluation for satellite communications

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2001
Axel Jahn
Abstract Efficient resource management is mandatory to achieve maximum system capacity for next generation communications systems. Resource management deals with the available spectral band, time, power, and space for a transmission signal. It includes (i) the frequency planning, (ii) the selection of transmit power, and (iii) the assignment of the channels and access nodes to the users. The paper presents a generalized notation as well as graph algorithms for resource management problems. Impairment graphs can be used for frequency planning, whereas flow graphs are suitable for channel access problems. To evaluate the performance of the resource management, service criteria (such as blocking or the carrier to interference ratio C/I) or efficiency criteria (bandwidth requirements) can be derived from the graphs. The resource management techniques are applied to satellite networks with non-geostationary orbits yielding time-variant network topologies. As a simple example, the channel assignment and capacity optimization of the EuroSky Way system are shown. Furthermore, a comparison of fixed, dynamic and hybrid channel allocation schemes (FCA, DCA, HCA) for a typical MEO satellite scenario is given. Satellite diversity and its impact on bandwidth requirement and transmission quality is also examined. Finally, it is shown how spread spectrum systems can be investigated with the presented tools. Copyright © 2001 John Wiley & Sons, Ltd. [source]