System Applicable (system + applicable)

Distribution by Scientific Domains


Selected Abstracts


Calculating Ground Water Transit Time of Horizontal Flow through Leaky Aquifers

GROUND WATER, Issue 1 2008
Angelika C. Braunsfurth
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored. [source]


Fixed Energy Storage Technology Applied for DC Electrified Railway

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 3 2010
Takeshi Konishi Member
Abstract The fixed energy storage system solves the problem of rising energy costs by reducing primary energy consumption. Without a fixed energy storage system, the energy generated by a braking vehicle would be simply converted into waste heat by its braking resistors if no other vehicles are powered simultaneously. Because, as a rule, such synchronized braking and powering cannot be coordinated, the energy storage system stores the energy generated during braking and discharges it again when a vehicle is powered. This greatly reduces primary energy demand in the substation. However, in addition to this energy saving, the energy storage system contributes to the reduction of CO2 emissions. The energy storage system also stabilizes the system voltage. Recent years have witnessed an advance in the energy storage media technology. Developments of energy storage media, lithium ion battery, nickel-metal hydride battery, and electric double-layer capacitors (EDLCs) have been remarkable. This study introduces technologies of fixed energy storage system applicable for DC electrified railway in Japan, and describes two examples of charge/discharge characteristics. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009
Albert Boddien
Abstract The ruthenium-catalyzed decomposition of formic acid was investigated with respect to continuous hydrogen generation and long-term stability of the catalytic systems. A highly active and stable system is presented, which was studied in batch and continuous modes for up to two months. The optimized catalyst system containing N,N -dimethyl- n -hexylamine with an in situ generated catalyst from (benzene)ruthenium dichloride dimer [RuCl2(benzene)]2 and 6 equivalents of 1,2-bis(diphenylphosphino)ethane (dppe) reached at room temperature a total turnover number (TON) of approximatly 260,000 with average turnover frequency (TOF) of about 900,h,1. Only hydrogen and carbon dioxide were detected in the produced gas mixture which makes this system applicable for direct use in fuel cells. [source]


Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2006
Mojgan Masoodi
Prostanoids are potent mediators of many physiological and pathophysiological processes. Of the many analytical methodologies used for their qualitative and quantitative analysis, electrospray tandem mass spectrometry coupled to liquid chromatography (LC/ESI-MS/MS) offers a rapid, sensitive and versatile system applicable to lipidomic analyses. We have developed an LC/ESI-MS/MS assay for twenty-seven mediators including prostaglandins, prostacyclines, thromboxanes, dihydroprostaglandins and isoprostanes. The assay was liner over the concentration range 1,100 pg/µL. The limits of detection and quantitation were 0.5,50 and 2,100 pg, respectively, whilst recoveries were from 83,116% depending on the metabolite. The assay can be applied to the profiling of prostanoids produced by a variety of biological fluids and extracts including brain, liver, plasma and urine, thus facilitating our understanding of the role of these lipid mediators in health and disease, as well as assisting in drug development. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Design of a complement mannose-binding lectin pathway-specific activation system applicable at low serum dilutions

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2006
M. Harboe
Summary Recently we showed that alternative pathway (AP) amplification was responsible for more than 80% of specific classical pathway-induced terminal pathway activation under physiological conditions. The present study aimed to design a system for specific lectin pathway (LP) activation applicable at low serum dilutions with a fully functional AP. Comparison between activation of normal human serum (NHS), a mannose-binding lectin (MBL) homozygous D/D -deficient serum, and sera deficient in C1q and C2, all diluted 1 : 2, was essential to document optimal conditions for LP specificity. Mannan on the solid phase of enzyme-linked immunosorbent assay (ELISA) plates was used for activation, showing 0·5 µg mannan/well to give optimal conditions because at this concentration a good signal was preserved for C4 and TCC deposition in NHS, whereas the C3 deposition observed in C2-deficient serum at higher mannan concentrations reached nadir at 0·5 µg/well, indicating a lack of direct AP activation under these conditions. Pooled NHS and C1q-deficient serum gave the same degree of C4 and terminal complement complex (TCC) deposition, whereas deposition of these products was not obtained with MBL-deficient serum. Reconstitution with purified MBL, however, restored the depositions. A blocking anti-MBL monoclonal antibody (mAb) completely abolished the complement deposition, in contrast to a non-inhibiting anti-MBL mAb. Activation of C2-deficient serum induced C4 deposition similar to NHS, but negligible deposition of C3 and TCC, confirming the lack of direct activation of AP. Thus, this assay is unique in being LP-specific at low serum dilution and thus particularly suitable to study LP activation mechanisms and the role of AP amplification under physiological conditions. [source]