Home About us Contact | |||
Synthetic Substrate (synthetic + substrate)
Selected AbstractsIdentification of isopeptidase activity in the midgut of insects: Purification, properties and nutritional ecology of a Hofmannophila pseudospretella (Lepidoptera: Oecophoridae) larval enzymeINSECT SCIENCE, Issue 4 2010Robert M. Simpson Abstract, A ,-glutamyl transpeptidase (isopeptidase) has been purified 580-fold to homogeneity from the midgut of keratinophagous larvae of Hofmannophila pseudospretella. The enzyme is a single polypeptide of molecular mass 80 kDa. The enzyme was identified by its hydrolytic activity against the synthetic substrate, ,-glutamyl-AMC, its molecular mass and inhibition profile compared to other ,-glutamyl transpeptidases. The enzyme is low or absent from most other insect digestive systems apart from other keratinophagous lepidopteran larvae and predatory carabids. While isopeptide bonds are present in high levels of the proteins in the diet of keratinophages, their presence in the diet of predatory beetles has not been established. [source] Human brain aminopeptidase A: biochemical properties and distribution in brain nucleiJOURNAL OF NEUROCHEMISTRY, Issue 1 2008Nadia De Mota Abstract Aminopeptidase A (APA) generated brain angiotensin III, one of the main effector peptides of the brain renin angiotensin system, exerting a tonic stimulatory effect on the control of blood pressure in hypertensive rats. The distribution of APA in human brain has not been yet studied. We first biochemically characterized human brain APA (apparent molecular mass of 165 and 130 kDa) and we showed that the human enzyme exhibited similar enzymatic characteristics to recombinant mouse APA. Both enzymes had similar sensitivity to Ca2+. Kinetic studies showed that the Km (190 ,mol/L) of the human enzyme for the synthetic substrate- l -glutamyl-,-naphthylamide was close from that of the mouse enzyme (256 ,mol/L). Moreover, various classes of inhibitors including the specific and selective APA inhibitor, (S)-3-amino-4-mercapto-butyl sulfonic acid, had similar inhibitory potencies toward both enzymes. Using (S)-3-amino-4-mercapto-butyl sulfonic acid, we then specifically measured the activity of APA in 40 microdissected areas of the adult human brain. Significant heterogeneity was found in the activity of APA in the various analyzed regions. The highest activity was measured in the choroids plexus and the pineal gland. High activity was also detected in the dorsomedial medulla oblongata, in the septum, the prefrontal cortex, the olfactory bulb, the nucleus accumbens, and the hypothalamus, especially in the paraventricular and supraoptic nuclei. Immunostaining of human brain sections at the level of the medulla oblongata strengthened these data, showing for the first time a high density of immunoreactive neuronal cell bodies and fibers in the motor hypoglossal nucleus, the dorsal motor nucleus of the vagus, the nucleus of the solitary tract, the Roller nucleus, the ambiguus nucleus, the inferior olivary complex, and in the external cuneate nucleus. APA immunoreactivity was also visualized in vessels and capillaries in the dorsal motor nucleus of the vagus and the inferior olivary complex. The presence of APA in several human brain nuclei sensitive to angiotensins and involved in blood pressure regulation suggests that APA in humans is an integral component of the brain renin angiotensin system and strengthens the idea that APA inhibitors could be clinically tested as an additional therapy for the treatment of certain forms of hypertension. [source] Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase NJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2001Andreas Bernkop-Schnürch Abstract The purpose of this study was to evaluate the potential of polycarbophil,cysteine conjugates (PCP,Cys) as an oral excipient to protect leucine enkephalin (leu-enkp) from enzymatic degradation by the intestinal mucosa. Cysteine was covalently linked to polycarbophil by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC). Inhibitory activity was tested towards isolated aminopeptidase N and excised intact pig intestinal mucosa, with native mucus. Aminopeptidase N activity was assayed spectrophotometrically using L -leucine p -nitroanilide (leu-pNA) as a synthetic substrate and against the model peptide drug leu-enkp, by high-performance liquid chromatography (HPLC). Free cysteine at 6.3 and 63 ,M (pH 6) significantly (p,<,0.05) inhibited aminopeptidase N activity, and PCP,Cys (0.25% w/v, pH 6) had a significantly (p,<,0.05) greater inhibitory effect than PCP on the aminopeptidase N activity towards both substrates. PCP,Cys completely protected leu-enkp against aminopeptidase N activity over a 2-h incubation period, whereas 83,±,4 and 60,±,7% remained stable in the presence of PCP and buffer only, respectively. Leu-enkp in the absence and presence of PCP (0.25% w/v) at pH 6 was completely digested by the intact intestinal mucosa at the 60- and 90-min incubation time points, respectively, whereas in the presence of PCP,Cys (0.25% w/v, pH 6) 11,±,3.5% of leu-enkp remained at the 120-min time point. Thiolation of PCP increased the stability of leu-enkp against the enzymatic degradation by aminopeptidase N and the intact intestinal mucosa, identifying a promising new excipient for peroral delivery of peptides. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1907,1914, 2001 [source] Evaluation of the inhibition effect of thiolated poly(acrylates) on vaginal membrane bound aminopeptidase N and release of the model drug LH-RHJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2002Claudia Valenta The purpose of this study was to evaluate the inhibitory effect of thiolated carbopol 974P (carbcys) on the enzymatic activity of vaginal aminopeptidase N in-vitro. Mediated by a carbodiimide, L-cysteine was covalently linked to carbopol 974P. Depending on the weight ratio of polymer to cysteine during the coupling reaction, resulting conjugates displayed 31.3,54.4 ,mol thiol groups per g polymer. The inhibitory effect of carb-cys conjugates was evaluated towards isolated aminopeptidase N and aminopeptidase-N-like activity of excised vaginal mucosa covered with native mucus, respectively. Enzymatic activity was assayed spectrophotometrically using L-leucine- p -nitroanilide (L-leu-pNA) as a synthetic substrate. Carb-cys thereby showed a significantly higher inhibitory effect than unmodified polymer towards both isolated enzyme and vaginal mucosa. Moreover, enzyme inhibition was strongly dependent on the amount of thiol groups being immobilised. The more thiol groups available the higher was the inhibitory effect. Due to its additional high cohesive properties and the possibility of a sustained drug release, which could be shown for the model drug LH-RH, carb-cys appears interesting for the development of vaginal peptide drug-delivery systems. [source] The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivityFEBS JOURNAL, Issue 6 2001Vera Knäuper Interstitial collagen is degraded by members of the matrix metalloproteinase (MMP) family, including MMP-1. Previous work has shown that the region of MMP-1 coded for by exon 5 is implicated both in substrate specificity and inhibitor selectivity. We have constructed a chimeric enzyme, the exon 5 chimera, consisting primarily of MMP-1, with the region coded for by exon 5 replaced with the equivalent region of MMP-3, a noncollagenolytic MMP. Unlike MMP-3, the exon 5 chimera is capable of cleaving type I collagen, but the activity is only 2.2% of trypsin-activated MMP-1. ,Superactivation' of the chimera has no discernible effect, suggesting that the salt bridge formed in ,superactive' MMP-1 is not present. The kinetics for exon 5 chimera cleavage of two synthetic substrates display an MMP-3 phenotype, however, cleavage of gelatin is slightly impaired as compared to the parent enzymes. The Kiapp values for the exon 5 chimera complexed with synthetic inhibitors and N-terminal TIMP-2 also show a more MMP-3-like behaviour. However, the kon values for N-terminal TIMP-1 and N-terminal TIMP-2 are more comparable to those for MMP-1. These data show that the region of MMP-1 coded for by exon 5 is involved in both substrate specificity and inhibitor selectivity and the structural basis for our findings is discussed. [source] Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesisBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009Chuan-Qi Zhong Abstract By directed evolution and subsequent site-directed mutagenesis, cold-adapted variants of WF146 protease, a thermophilic subtilase, have been successfully engineered. A four-amino acid substitution variant RTN29 displayed a sixfold increase in caseinolytic activity in the temperature range of 15,25°C, a down-shift of optimum temperature by ,15°C, as well as a decrease in thermostability, indicating it follows the general principle of trade-off between activity and stability. Nevertheless, to some extent RTN29 remained its thermophilic nature, and no loss of activity was observed after heat-treatment at 60°C for 2,h. Notably, RTN29 exhibited a lower hydrolytic activity toward suc-AAPF-pNA, due to an increase in Km and a decrease in kcat, in contrast to other artificially cold-adapted subtilases with increased low-temperature activity toward small synthetic substrates. All mutations (S100P, G108S, D114G, M137T, T153A, and S246N) identified in the cold-adapted variants occurred within or near the substrate-binding region. None of these mutations, however, match the corresponding sites in naturally psychrophilic and other artificially cold-adapted subtilases, implying there are multiple routes to cold adaptation. Homology modeling and structural analysis demonstrated that these mutations led to an increase in mobility of substrate-binding region and a modulation of substrate specificity, which seemed to account for the improvement of the enzyme's catalytic activity toward macromolecular substrates at lower temperatures. Our study may provide valuable information needed to develop enzymes coupling high stability and high low-temperature activity, which are highly desired for industrial use. Biotechnol. Bioeng. 2009; 104: 862,870. © 2009 Wiley Periodicals, Inc. [source] Biochemical and immunological characterization of a recombinant precursor form of the house dust mite allergen Der p 1 produced by Drosophila cellsCLINICAL & EXPERIMENTAL ALLERGY, Issue 5 2000Jacquet Background The major house dust mite allergen Der p 1 elicits strong IgE antibody responses in patients suffering from mite allergy. Objective This study reports the expression and characterization of a recombinant precursor form of Der p 1 secreted as ProDer p 1 from insect cells. Methods The cDNA coding for ProDer p 1 was cloned downstream to the gp67 signal peptide, starting from commercial cDNA encoding Der p 1 and PCR-amplified ProDer p 1 genomic fragment. ProDer p 1, expressed in Drosophila cells and purified from culture medium, was compared to Der p 1 isolated from mite culture, in terms of glycosylation, enzymatic activity as well as IgG- and IgE-binding capacity. Results Sequence analysis of the genomic clone of ProDer p 1 revealed that, besides two introns in the mature Der p 1 coding sequence, two introns were also present in the propeptide coding sequence. ProDer p 1 was purifed to homogeneity by a combination of ion-exchange, hydroxyapatite and gel filtration chromatographies. The precursor form of Der p 1 could be processed in vitro into mature Der p 1 under acidic and reducing conditions. Carbohydrate analysis clearly indicated that ProDer p 1 expressed from insect cells was glycosylated and that glycan structures were located only in the prosequence. ProDer p 1 displayed a similar immunoreactivity towards IgE, monoclonal and polyclonal IgG antibodies compared to natural Der p 1. Specific activity measurements using synthetic substrates clearly indicated that, contrary to natural Der p 1, ProDer p 1 was totally enzymatically inactive. Conclusions The expression of an enzymatically inactive and highly antigenic ProDer p 1 zymogen molecule could be a suitable strategy for the development of in vitro diagnosis test as well as for specific immunotherapy. [source] |