Home About us Contact | |||
Synthetic PPAR (synthetic + ppar)
Selected AbstractsPomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-,/-, activator propertiesDIABETES OBESITY & METABOLISM, Issue 1 2008Yuhao Li PPARs are transcription factors belonging to the superfamily of nuclear receptors. PPAR-, is involved in the regulation of fatty acid (FA) uptake and oxidation, inflammation and vascular function, while PPAR-, participates in FA uptake and storage, glucose homeostasis and inflammation. The PPARs are thus major regulators of lipid and glucose metabolism. Synthetic PPAR-, or PPAR-, agonists have been widely used in the treatment of dyslipidaemia, hyperglycaemia and their complications. However, they are associated with an incidence of adverse events. Given the favourable metabolic effects of both PPAR-, and PPAR-, activators, as well as their potential to modulate vascular disease, combined PPAR-,/-, activation has recently emerged as a promising concept, leading to the development of mixed PPAR-,/-, activators. However, some major side effects associated with the synthetic dual activators have been reported. It is unclear whether this is a specific effect of the particular synthetic compounds or a class effect. To date, a medication that may combine the beneficial metabolic effects of PPAR-, and PPAR-, activation with fewer undesirable side effects has not been successfully developed. Pomegranate plant parts are used traditionally for the treatment of various disorders. However, only pomegranate flower has been prescribed in Unani and Ayurvedic medicines for the treatment of diabetes. This review provides a new understanding of the dual PPAR-,/-, activator properties of pomegranate flower in the potential treatment of diabetes and its associated complications. [source] The PPAR, agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibitionEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2007T. Kino Abstract Background, Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor , (PPAR,), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. Materials and methods, We examined the ability of the synthetic PPAR, agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results, GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein ,1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of ,2-acid glycoprotein, ,-fibrinogen and ,2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPAR, receptor, but not of PPAR, or ,, attenuated the suppressive effect of GW501516 on interleukin-6-induced ,1-antichymotrypsin mRNA expression, indicating that PPAR, specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the ,1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPAR, on this promoter. Overexpression of PPAR, enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the ,1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. Conclusions, These findings indicate that agonist-activated PPAR, interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPAR, agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role. [source] Biomolecular characterization of human glioblastoma cells in primary cultures: Differentiating and antiangiogenic effects of natural and synthetic PPAR, agonistsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008E. Benedetti Gliomas are the most commonly diagnosed malignant brain primary tumors. Prognosis of patients with high-grade gliomas is poor and scarcely affected by radiotherapy and chemotherapy. Several studies have reported antiproliferative and/or differentiating activities of some lipophylic molecules on glioblastoma cells. Some of these activities in cell signaling are mediated by a class of transcriptional factors referred to as peroxisome proliferator-activated receptors (PPARs). PPAR, has been identified in transformed neural cells of human origin and it has been demonstrated that PPAR, agonists decrease cell proliferation, stimulate apoptosis and induce morphological changes and expression of markers typical of a more differentiated phenotype in glioblastoma and astrocytoma cell lines. These findings arise from studies mainly performed on long-term cultured transformed cell lines. Such experimental models do not exactly reproduce the in vivo environment since long-term culture often results in the accumulation of further molecular alterations in the cells. To be as close as possible to the in vivo condition, in the present work we investigated the effects of PPAR, natural and synthetic ligands on the biomolecular features of primary cultures of human glioblastoma cells derived from surgical specimens. We provide evidence that PPAR, agonists may interfere with glioblastoma growth and malignancy and might be taken in account as novel antitumoral drugs. J. Cell. Physiol. 217: 93,102, 2008. © 2008 Wiley-Liss, Inc. [source] Apoptosis induced by troglitazone is both peroxisome proliferator-activated receptor-,- and ERK-dependent in human non-small lung cancer cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006Mingyue Li The role of the peroxisome proliferator-activated receptor-gamma (PPAR,) in cell differentiation, cell-cycle arrest, and apoptosis has attracted increasing attention. We have recently demonstrated that PPAR, ligands-troglitazone (TGZ) induced apoptosis in lung cancer cells. In this report, we further studied the role of ERK1/2 in lung cancer cells treated by TGZ. The result demonstrated that TGZ induced PPAR, and ERK1/2 accumulation in the nucleus, in which the co-localization of both proteins was found. The activation of ERK1/2 resulted in apoptosis via a mitochondrial pathway. Both PPAR, siRNA and U0126, a specific inhibitor of ERK1/2, were able to block these effects of TGZ, suggesting that apoptosis induced by TGZ was PPAR, and ERK1/2 dependent. Inhibition of ERK1/2 by U0126 also led to a significant decrease in the level of PPAR,, indicating a positive cross-talk between PPAR, and ERK1/2 or an auto-regulatory feedback mechanism to amplify the effect of ERK1/2 on cell growth arrest and apoptosis. In addition to ERK1/2, TGZ also activated Akt. Interestingly, inhibition of ERK1/2 prevented the activation of Akt whereas the suppression of Akt had no effect on ERK1/2, suggesting that Akt was not necessary for TGZ-PPAR,-ERK pathway. However, the inhibition of Akt promoted the release of cytochrome c, suggesting the activation of Akt may have a negative effect on apoptosis induced by TGZ. In conclusion, our study has demonstrated that TGZ, a synthetic PPAR, ligand, induced apoptosis in NCI-H23 lung cancer cells via a mitochondrial pathway and this pathway was PPAR, and ERK1/2 dependent. J. Cell. Physiol. 209: 428,438, 2006. © 2006 Wiley-Liss, Inc. [source] Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cellsBIOFACTORS, Issue 1 2004Eiko Imamoto Abstract The interaction between leukocytes and the vascular endothelial cells (EC) via cellular adhesion molecules plays an important role in various inflammatory and immune diseases. It has been suggested that peroxisome proliferator-activated receptor-, (PPAR-,, a member of the nuclear receptor superfamily of transcription factors) might be involved in the control of inflammation and in modulating the expression of various cytokines. The aim of this investigation was to evaluate the anti-inflammatory properties of PPAR-, activators, as well as the inhibitory effect of PPAR-, on the expression of adhesion molecules on leukocytes and vascular endothelial cells. Pioglitazone, a synthetic PPAR-, activator, suppressed the increase of CD11b/CD18 expression on FMLP-activated leukocytes, as detected by immunofluorescence flow cytometry. However, the FMLP-induced elevation of cytosolic Ca+2 in leukocytes was not suppressed by pioglitazone. Pioglitazone inhibited the expression of VCAM-1 protein and mRNA on activated human umbilical vein endothelial cells (HUVEC) after IL-1, stimulation, as detected by ELISA and real-time PCR. However, it showed little effect on the expression of ICAM-1 and E-selectin. The present study revealed that pioglitazone can influence monocyte-EC binding by inhibiting VCAM-1 expression on activated EC and neutrophil-EC binding by inhibiting upregulation of CD11b/CD18 on activated neutrophils. Accordingly, pioglitazone may be useful for treating inflammatory diseases. [source] |