Synthetic Auxin (synthetic + auxin)

Distribution by Scientific Domains


Selected Abstracts


On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 10 2002
Klaus Grossmann
Abstract BAS 662H, a 1:2.5 combination of the semicarbazone-type auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba, is used as a post-emergence herbicide in corn. The combination has been observed to provide more effective broadleaf weed control and improved tolerance in corn than typical rates of dicamba used alone. In order to analyze this phenomenon, the uptake, translocation, metabolism and action of both compounds, applied alone and in combination, were investigated in Amaranthus retroflexus L, Galium aparine L and corn (Zea mays L). When plants at the third-leaf stage were foliarly treated with diflufenzopyr and dicamba equivalent to field rates of 100 and 250,gha,1, respectively, diflufenzopyr synergistically increased dicamba-induced 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity and ethylene formation in G aparine and even more in A retroflexus, followed by accumulations of (+)-abscisic acid (ABA) in the shoot tissue within 20,h. This correlated with subsequent growth inhibition, hydrogen peroxide overproduction and progressive tissue damage. Diflufenzopyr also enhanced the activity of other auxin herbicides, such as quinclorac and picloram, and of the synthetic auxin, 1-naphthaleneacetic acid. After foliar and root application of [14C]diflufenzopyr, alone or as BAS 662H, considerably lower tissue concentrations and systemic translocation of radioactivity beyond treated plant parts were found in corn, compared to G aparine and particularly A retroflexus. Furthermore, diflufenzopyr decreased foliar uptake of [14C]dicamba by c,50% selectively in corn, compared to the treatment alone. Metabolism of [14C]diflufenzopyr was more rapid in corn than in the weed species. In combination, the two compounds had no mutual effect on their metabolic degradation. In BAS 662H, diflufenzopyr synergizes the herbicidal activity of dicamba in sensitive weed species. In corn this effect is prevented by a more rapid metabolism of diflufenzopyr, coupled with lower uptake and translocation. Selectivity of BAS 662H is additionally favoured by a higher crop tolerance to dicamba because of reduced foliar uptake of this herbicide in corn under the influence of diflufenzopyr. © 2002 Society of Chemical Industry [source]


Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1

THE PLANT JOURNAL, Issue 2 2005
Markus Geisler
Summary Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in reductions of growth and auxin transport in Arabidopsis (atpgp1, atpgp19), maize (brachytic2) and sorghum (dwarf3). Here we examine the localization, activity, substrate specificity and inhibitor sensitivity of AtPGP1. AtPGP1 exhibits non-polar plasma membrane localization at the shoot and root apices, as well as polar localization above the root apex. Protoplasts from Arabidopsis pgp1 leaf mesophyll cells exhibit reduced efflux of natural and synthetic auxins with reduced sensitivity to auxin efflux inhibitors. Expression of AtPGP1 in yeast and in the standard mammalian expression system used to analyze human MDR-type proteins results in enhanced efflux of indole-3-acetic acid (IAA) and the synthetic auxin 1-naphthalene acetic acid (1-NAA), but not the inactive auxin 2-NAA. AtPGP1-mediated efflux is sensitive to auxin efflux and ABC transporter inhibitors. As is seen in planta, AtPGP1 also appears to mediate some efflux of IAA oxidative breakdown products associated with apical sites of high auxin accumulation. However, unlike what is seen in planta, some additional transport of the benzoic acid is observed in yeast and mammalian cells expressing AtPGP1, suggesting that other factors present in plant tissues confer enhanced auxin specificity to PGP-mediated transport. [source]


A Study of the Interaction between Auxin and Ethylene in Wild Type and Transgenic Ethylene-Insensitive Tobacco during Adventitious Root Formation Induced by Stagnant Root Zone Conditions

PLANT BIOLOGY, Issue 5 2003
M. P. McDonald
Abstract: Wild type (Wt) and transgenic plants (etr1-1 gene from Arabidopsis thaliana; encoding for a defective ethylene receptor; Tetr) of Nicotiana tabacum L. were subjected to experiments to resolve the role of the interaction between ethylene and auxin in waterlogging-induced adventitious root formation. Plants were grown in aerated or stagnant deoxygenated nutrient solution and treated with the following plant growth regulators: ethylene, the synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (1-NAA), and the auxin efflux inhibitor naphthylphthalamic acid (NPA). The superior growth of Wt in stagnant solution suggests that the ability to sense and respond to ethylene partially mediates tolerance to stagnant root zone conditions. Wt produced around 2 - 2.5-fold more adventitious roots than Tetr in aerated and stagnant solution. Treatment with NPA phenocopied the effects of ethylene insensitivity by reducing the number of adventitious roots on Wt to Tetr levels. Additionally, application of 1-NAA to the shoot of Tetr increased the number of adventitious roots on Tetr to similar levels as the untreated Wt. However, this level was only around half the number achieved by 1-NAA-treated Wt. The results suggest an interplay between ethylene and auxin in the process of adventitious root formation in waterlogged tobacco, most likely on the level of polar auxin transport. However, a separate non-auxin-related role as a transcription regulator for genes essential to adventitious root formation cannot be excluded. [source]


Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1

THE PLANT JOURNAL, Issue 2 2005
Markus Geisler
Summary Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in reductions of growth and auxin transport in Arabidopsis (atpgp1, atpgp19), maize (brachytic2) and sorghum (dwarf3). Here we examine the localization, activity, substrate specificity and inhibitor sensitivity of AtPGP1. AtPGP1 exhibits non-polar plasma membrane localization at the shoot and root apices, as well as polar localization above the root apex. Protoplasts from Arabidopsis pgp1 leaf mesophyll cells exhibit reduced efflux of natural and synthetic auxins with reduced sensitivity to auxin efflux inhibitors. Expression of AtPGP1 in yeast and in the standard mammalian expression system used to analyze human MDR-type proteins results in enhanced efflux of indole-3-acetic acid (IAA) and the synthetic auxin 1-naphthalene acetic acid (1-NAA), but not the inactive auxin 2-NAA. AtPGP1-mediated efflux is sensitive to auxin efflux and ABC transporter inhibitors. As is seen in planta, AtPGP1 also appears to mediate some efflux of IAA oxidative breakdown products associated with apical sites of high auxin accumulation. However, unlike what is seen in planta, some additional transport of the benzoic acid is observed in yeast and mammalian cells expressing AtPGP1, suggesting that other factors present in plant tissues confer enhanced auxin specificity to PGP-mediated transport. [source]