Home About us Contact | |||
Synthetase
Kinds of Synthetase Terms modified by Synthetase Selected AbstractsROLE OF GLUTAMATE DEHYDROGENASE AND GLUTAMINE SYNTHETASE IN CHLORELLA VULGARIS DURING ASSIMILATION OF AMMONIUM WHEN JOINTLY IMMOBILIZED WITH THE MICROALGAE-GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM BRASILENSE,JOURNAL OF PHYCOLOGY, Issue 5 2008Luz E. De-Bashan Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L,1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L,1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L,1 NH4+, but not at 8 mg · L,1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per-cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L,1 NH4+ was GDH activity per cell higher. [source] Crystal Structure of an EMAP-II-Like Cytokine Released from a Human tRNA SynthetaseHELVETICA CHIMICA ACTA, Issue 4 2003Xiang-Lei Yang Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis by aminoacylation of tRNAs. Remarkably, biological fragments of two human enzymes , tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase , are active cytokines produced by proteolysis or alternative splicing. One is a C-terminal fragment of TyrRS (C-TyrRS) that has potent activity for chemotaxis of leukocytes and monocytes and for stimulating production of other cytokines. Significantly, the cytokine activity of C-TyrRS is absent in the context of the full-length native protein. Unknown is the mechanism by which domain-release from the dimeric native protein activates the cytokine. Here, the crystal structure of C-TyrRS is presented at 2.2,Å resolution. This structure is similar to that of endothelial monocyte-activating protein II (EMAP-II), with critical residues of a heptapeptide element important for chemotaxis activity exposed on the first strand of a , -barrel of the monomeric unit. In contrast, the same residues of C-TyrRS are buried in an operational model for native TyrRS. Importantly, C-TyrRS is shown here to be monomeric when released from dimeric native TyrRS. Further analysis suggests that the critical residues are exposed when tRNA is bound. Thus, tRNA binding to native TyrRS may be an additional or alternative way to activate cytokine signaling. [source] Characterization of a Cryptosporidium parvum Gene Encoding a Protein with Homology to Long Chain Fatty Acid SynthetaseTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2003Leonardo Camero ABSTRACT: We describe here the cloning, sequencing, and characterization of a novel Cryptosporidium parvum gene, encoding a protein with significant homology to the long-chain fatty acyl-CoA synthetase (LCFA, EC 6.2.13). The gene has an open reading frame of 2,301 bp, coding for a 766 amino acid polypeptide, and with an estimated MW of 86.1 kDa. By indirect immunofluorescence assay, monoclonal antibodies C3CE7 and ESD labeled the anterior pole of fixed C. parvum sporozoites and developmental stages in C. parvum-infected cultures at 24, 48, and 72 h post-infection. These monoclonal antibodies inhibited more than 3.5% of parasite growth in vitro. The effect of triacsin C, a potent selective inhibitor of LCFA synthetase, on parasite growth was assessed in cell culture; complete inhibition of parasite growth at 2.5 ug/inl was obtained with little evidence of drug-associated cytotoxicity. These results suggest that the fatty acyl-CoA synthetase may be a useful target in the development of selective inhibitors and immunologic interventions against C. parvum [source] Application of Fragment Growing and Fragment Linking to the Discovery of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase,ANGEWANDTE CHEMIE, Issue 45 2009Alvin Zwei Wege zu leistungsfähigen Inhibitoren des Titelenzyms: Röntgenkristallographie und isotherme Titrationskalorimetrie halfen, Fragmente, die in biophysikalischen Screenings identifiziert worden waren, systematisch zu verbessern. Der exzellente, rechts im aktiven Zentrum des Enzyms gezeigte Inhibitor wurde aus dem Leitfragment (links) und einem Acylsulfonamid-Linker erhalten und ähnelt dem besten mit der Fragmentwachstumsstrategie ermittelten Inhibitor. [source] Expression of Secreted His-Tagged S -adenosylmethionine Synthetase in the Methylotrophic Yeast Pichia pastoris and Its Characterization, One-Step Purification, and ImmobilizationBIOTECHNOLOGY PROGRESS, Issue 1 2008Yunxing Luo S -Adenosylmethionine synthetase (SAM synthetase) catalyzes the synthesis of S -adenosylmethionine (SAM), which plays an important role in cellular functions such as methylation, sulfuration, and polyamine synthesis. To develop a simple and effective way to enzymatically synthesize and produce SAM, a soluble form of SAM synthetase encoded by SAM2 from Saccharomycescerevisiae was successfully produced at high level (,200 mg/L) by the recombinant methylotrophic yeast Pichiapastoris. The secreted His6 -tagged SAM synthetase was purified in a single chromatography step with a yield of approximately 82% for the total activity. The specific activity of the purified synthetase was 23.84 U/mg. The recombinant SAM synthetase could be a kind of allosteric enzyme with negative regulation. The enzyme functioned optimally at a temperature of 35 °C and pH 8.5. The stability of the recombinant synthetase and the effectiveness of different factors in preventing the enzyme from inactivation were also studied. Additional experiments were performed in which the recombinant SAM synthetase was purified and immobilized in one step using immobilized metal-chelate affinity chromatography. The immobilized synthetase was found to be 40.4% of the free enzyme activity in catalyzing the synthesis of SAM from dl -Met and ATP. [source] Improved Fermentation Processes for NS0 Cell Lines Expressing Human Antibodies and Glutamine SynthetaseBIOTECHNOLOGY PROGRESS, Issue 1 2003Jonathan Dempsey To meet the increasing requirement for therapeutic antibodies to conduct clinical trials, an enhanced culture medium and fed-batch process was developed for GS-NS0 cell lines. This process was shown to produce high concentrations of monoclonal antibodies for several cell lines expressing different antibodies. Cells were adapted to growth in a glutamine- and serum-free medium containing bovine serum albumin (BSA), cholesterol, and transferrin. A number of amino acids were found to be depleted during cell culture. The concentrations of these amino acids were increased, and further cell culture analyses were performed. This process of cell growth and analysis was repeated over multiple cycles until no depletion was detected. This resulted in an amino acid supplement that was shown to be generic and enhanced antibody productivity up to 5-fold for the three cell lines tested. Transferrin was replaced using tropolone, a lipophilic iron chelator and ferric ammonium citrate. Cell growth was equivalent to that in transferrin-containing medium over the wide ranges tested. A concentrated feed solution, based on the amino acid supplement and the components of the serum-and protein-free supplements, was formulated. Addition of this feed in response to metabolic requirements resulted in a harvest titer a further 2-fold higher than the enhanced culture medium. Harvest antibody titers of up to 600 mg/L were achieved for three cell lines expressing different antibodies, representing an increase of 10-fold over the starting concentrations. [source] Investigation of the Substrate Specificity of Lacticin 481 Synthetase by Using Nonproteinogenic Amino AcidsCHEMBIOCHEM, Issue 5 2009Matthew R. Levengood Abstract One enzyme, many substrates. The substrate specificity of a lantibiotic biosynthetic enzyme, lacticin 481 synthetase, was probed by using synthetic prepeptides containing a variety of nonproteinogenic amino acids, including unnatural ,-amino acids, ,-amino acids, D -amino acids, and peptoids. Lantibiotics are peptide antimicrobial compounds that are characterized by the thioether-bridged amino acids lanthionine and methyllanthionine. For lacticin 481, these structures are installed in a two-step post-translational modification process by a bifunctional enzyme, lacticin 481 synthetase (LctM). LctM catalyzes the dehydration of Ser and Thr residues to generate dehydroalanine or dehydrobutyrine, respectively, and the subsequent intramolecular regio- and stereospecific Michael-type addition of cysteines onto the dehydroamino acids. In this study, semisynthetic substrates containing nonproteinogenic amino acids were prepared by expressed protein ligation and [3+2]-cycloaddition of azide and alkyne-functionalized peptides. LctM demonstrated broad substrate specificity toward substrates containing ,-amino acids, D -amino acids, and N -alkyl amino acids (peptoids) in certain regions of its peptide substrate. These findings showcase its promise for use in lantibiotic and peptide-engineering applications, whereby nonproteinogenic amino acids might impart improved stability or modulated biological activities. Furthermore, LctM permitted the incorporation of an alkyne-containing amino acid that can be utilized for the site-selective modification of mature lantibiotics and used in target identification. [source] Functional Characterization of the Recombinant N -Methyltransferase Domain from the Multienzyme Enniatin SynthetaseCHEMBIOCHEM, Issue 9 2007Till Hornbogen Dr. Abstract A 51 kDa fusion protein incorporating the N -methyltransferase domain of the multienzyme enniatin synthetase from Fusarium scirpi was expressed in Saccharomyces cerevisiae. The protein was purified and found to bind S -adenosyl methionine (AdoMet) as demonstrated by cross-linking experiments with 14C-methyl-AdoMet under UV irradiation. Cofactor binding at equilibrium conditions was followed by saturation transfer difference (STD) NMR spectroscopy, and the native conformation of the methyltransferase was assigned. STD NMR spectroscopy yielded significant signals for H2 and H8 of the adenine moiety, H1' of D -ribose, and SCH3 group of AdoMet. Methyl group transfer catalyzed by the enzyme was demonstrated by using aminoacyl- N -acetylcysteamine thioesters (aminoacyl-SNACs) of L -Val, L -Ile, and L -Leu, which mimic the natural substrate amino acids of enniatin synthetase presented by the enzyme bound 4,-phosphopantetheine arm. In these experiments the enzyme was incubated in the presence of the corresponding aminoacyl-SNAC and 14C-methyl-AdoMet for various lengths of time, for up to 30 min. N -[14C-Methyl]-aminoacyl-SNAC products were extracted with EtOAc and separated by TLC. Acid hydrolysis of the isolated labeled compounds yielded the corresponding N -[14C-methyl] amino acids. Further proof for the formation of N - 14C-methyl-aminoacyl-SNACs came from MALDI-TOF mass spectrometry which yielded 23,212 Da for N -methyl-valyl-SNAC, accompanied by the expected postsource decay (PSD) pattern. Interestingly, L -Phe, which is not a substrate amino acid of enniatin synthetase, also proved to be a methyl group acceptor. D -Val was not accepted as a substrate; this indicates selectivity for the L isomer. [source] Myxovirescin A Biosynthesis is Directed by Hybrid Polyketide Synthases/Nonribosomal Peptide Synthetase, 3-Hydroxy-3-Methylglutaryl,CoA Synthases, and trans-Acting AcyltransferasesCHEMBIOCHEM, Issue 8 2006Vesna Simunovic M.S. Abstract Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosyntesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (,taIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl,S,ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT,encoded by taV,blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl,CoA (HMG,CoA)-like biochemistry during biosynthesis. Disruption of the S -adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Qa and myxovirescin Qc. NMR analysis of purified myxovirescin Qa revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli. [source] Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in miceACTA PHYSIOLOGICA, Issue 4 2004A. Patzak Abstract Aim:, Efferent arterioles (Ef) are one of the final control elements in glomerular haemodynamics. The influence of nitric oxide (NO) on Ef remains ambiguous. Methods:, To test the hypothesis that endothelial NO plays an important role in this context, afferent arterioles (Af) and Ef of wild-type mice (WT), and Ef of mice lacking the endothelial NO synthetase [eNOS(,/,)] were perfused. Perfusion was performed in Ef via Af (orthograde) as well as from the distal end of Ef (retrograde), which provides an estimate for the importance of substances derived from the glomerulus. Angiotensin II (Ang II) was added in doses ranging from 10,12 to 10,6 mol L,1 to the bath solution. Results:, Ang II reduced the luminal diameter of Af to 68 ± 7 and in Ef to 55 ± 8% during orthograde, and to 35 ± 6% during retrograde perfusion (10,6 mol L,1 Ang II) in WT. Pre-treatment with NG -Nitro- l -arginine-methylester (l -NAME) (10,4 mol L,1) increased the Ang II sensitivity in retrograde (17 ± 9%) and orthograde perfused Ef (19 ± 9%). The Ang II sensitivity was enhanced in eNOS(,/,) mice compared with WT, too. Already at a dose of Ang II 10,9 mol L,1, luminal diameters diminished to 8 ± 7 and 7 ± 4%. Conclusion:, The increased Ang II sensitivity during l -NAME pre-treatment and in eNOS(,/,) mice indicates a strong counteraction of endothelial derived NO on Ang II induced contraction in Ef. Moreover, Ef are similarly sensitive to Ang II during either retrograde or orthograde perfusion in the absence of NO effects, suggesting that NO mediates, at least in part, the action of potential vasodilatory substances from the glomerulus. [source] Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseasesDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 2 2006Joannie Hui MBBS The aim of this study was to illustrate the difficulties in establishing a diagnosis of mitochondrial respiratory chain (MRC) disorders based on clinical grounds in combination with intermediate activities of the MRC enzyme complexes. We reviewed retrospectively all medical and laboratory records of patients initially considered likely to have MRC disorders on clinical grounds, and subsequently diagnosed with other disorders (n=20; 11 males, 9 females). Data were retrieved from hospital records, referral letters, and results of enzymatic analysis at a reference laboratory. Clinical symptoms included developmental delay, epilepsy, hypotonia, movement disorder, spastic quadriplegia, tetany, microcephaly, visual problems, carpopedal spasms, dysmorphism, hearing loss, muscle weakness and rhabdomyolysis, and fulminant hepatitis. Blood and cerebrospinal fluid lactate levels were elevated in 13/20 and 9/20 respectively. One or more MRC complex activities (expressed as ratios relative to citrate synthase and/or complex II activity) were less than 50% of control mean activity in 11/20 patients (including patients with deficiencies of pyruvate dehydrogenase complex, pantothenate kinase, holocarboxylase synthetase, long-chain hydroxy acyl-CoA dehydrogenase, molybdenum co-factor, and neonatal haemochromatosis). One patient had a pattern suggestive of mitochondrial proliferation. We conclude that intermediate results of MRC enzymes should be interpreted with caution and clinicians should be actively looking for other underlying diagnoses. [source] Proteomic analysis of osteogenic differentiation of dental follicle precursor cellsELECTROPHORESIS, Issue 7 2009Christian Morsczeck Abstract Recently, there has been an increased interest in unravelling the molecular mechanisms and cellular pathways controlling the differentiation and proliferation of human stem cell lines. Proteome analysis has proven to be an effective approach to comprehensive analysis of the regulatory network of differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins is associated with actin-bundling and defence against oxidative cellular stress, whereas down-regulated proteins were associated with collagen biosynthesis. Bioinformatic analyses of the entire data set confirmed these findings that represent significant steps towards the understanding of DFPC differentiation. The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic differentiation. We also identified regulatory proteins, such as the transcription factors TP53 and Sp-1, associated with the differentiation process. Further studies will investigate the impact of identified regulatory proteins for cell proliferation and osteogenic differentiation in DFPCs. [source] Enhancement of the NAD(P)(H) Pool in Escherichia coli for BiotransformationENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2007F. Heuser Abstract In pyridine nucleotide-dependent, reductive whole cell biotransformation with resting cells of Escherichia coli, the availability of intracellular NAD(P)(H) is a pivotal point for an efficient and highly productive substrate conversion. The question whether an increase of the intracellular NAD(P)(H) concentration could increase the productivity was discussed controversially in the past. This is the first report on an E. coli strain with an increased NAD(P)(H) pool which was tested in a reductive biotransformation system for an increased productivity. Biotransformation was performed with a strain overexpressing a gene encoding an (R)-specific alcohol dehydrogenase for the stereospecific, NADPH-dependent reduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate (MHB). Cofactor regeneration was implemented via glucose oxidation by coexpression of a gene encoding glucose dehydrogenase. The specific MHB productivity (mmol mg,1 cell dry weight,1h,1) enabled a comparison between the E. coli,BL21(DE3) wild-type and a genetically modified strain. The enhancement of the NAD(P)(H) pool was achieved by genetic manipulation of the NAD(H) biosynthetic pathways. After simultaneous overexpression of the pncB and nadE genes, encoding nicotinic acid phosphoribosyltransferase and NAD synthetase, measurements of the total NAD(P)(H) pool, sizes showed a 7-fold and 2-fold increased intracellular concentration of NAD(H) and NADP(H), respectively. However, the implementation of an E.,coli strain carrying a genomically integrated pncB gene with an upstream T7,promoter for biotransformation did not result in reproducible increased specific cell productivity. [source] Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicityENVIRONMENTAL MICROBIOLOGY, Issue 6 2010Joseph Lemire Summary Aluminium (Al), an environmental toxin, is known to disrupt cellular functions by perturbing iron (Fe) homeostasis. However, Fe is essential for such metabolic processes as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the two pivotal networks that mediate ATP production during aerobiosis. To counter the Fe conundrum induced by Al toxicity, Pseudomonas fluorescens utilizes isocitrate lyase and isocitrate dehydrogenase-NADP dependent to metabolize citrate when confronted with an ineffective aconitase provoked by Al stress. By invoking fumarase C, a hydratase devoid of Fe, this microbe is able to generate essential metabolites. To compensate for the severely diminished enzymes like Complex I, Complex II and Complex IV, the upregulation of a H2O-generating NADH oxidase enables the metabolism of citrate, the sole carbon source via a modified TCA cycle. The overexpression of succinyl-CoA synthetase affords an effective route to ATP production by substrate-level phosphorylation in the absence of O2. This fine metabolic balance enables P. fluorescens to survive the dearth of bioavailable Fe triggered by an Al environment, a feature that may have potential applications in bioremediation technologies. [source] Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806ENVIRONMENTAL MICROBIOLOGY, Issue 10 2008Emma Sevilla Summary Microcystins are toxins produced by cyanobacteria that entail serious health and environmental problems. They are cyclic heptapeptides synthesized via a mixed polyketide synthase/non-ribosomal peptide synthetase system called microcystin synthetase. Environmental and nutritional factors that trigger microcystin synthesis are still debated and this work deals with the study of the influence of iron nutritional status on the microcystin synthesis. The results indicate that iron deficiency could be one of the inducing factors of the microcystin synthesis. For the first time, increased transcription of an essential mcy gene and correlative microcystin synthesis has been established. Real-time PCR analysis of mcyD, and microcystin-LR synthesis were studied on Microcystis aeruginosa PCC7806 grown in iron-replete and iron-deplete media. Iron starvation causes an increase of mcyD transcription, correlative to the increase of microcystin-LR levels. Four transcription start points were identified for mcyD and two for mcyA, and they are not changed as a consequence of iron deficiency. [source] Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacteriumENVIRONMENTAL MICROBIOLOGY, Issue 7 2007Barbara Schellenberg Summary Glidobactins (syn. cepafungins) are a family of structurally related cytotoxic compounds that were isolated from the soil bacterial strain K481-B101 (ATCC 53080; DSM 7029) originally assigned to Polyangium brachysporum and, independently, from an undefined species related to Burkholderia cepacia. Glidobactins are acylated tripeptide derivatives that contain a 12-membered ring structure consisting of the two unique non-proteinogenic amino acids erythro -4-hydroxy- l -lysine and 4(S)-amino-2(E)-pentenoic acid. Here we report the cloning and functional analysis of a gene cluster (glbA,glbH) involved in glidobactin synthesis from K481-B101, which according to its 16S rRNA sequence belongs to the Burkholderiales. The putative encoded proteins include a mixed non-ribosomal peptide/polyketide synthetase whose structure and architecture allowed to build a biosynthetic pathway model explaining the biosynthesis of the unique peptide part of glidobactins. Intriguingly, among the more than 600 bacterial strains whose genome sequence is currently available, homologous gene clusters were found in Burkholderia pseudomallei, the causing agent of melioidosis, and in the insect pathogen Photorhabdus luminescens, strongly suggesting that these organisms are capable to synthesize compounds similar to glidobactins. In addition, a glb gene cluster that was inactivated by transposon-mediated rearrangements was also present in Burkholderia mallei, a very close relative of B. pseudomallei and the causing agent of glanders in horse-like animals. [source] Towards clarification of the biological role of microcystins, a family of cyanobacterial toxinsENVIRONMENTAL MICROBIOLOGY, Issue 4 2007Daniella Schatz Summary Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity. [source] Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termitesENVIRONMENTAL MICROBIOLOGY, Issue 7 2006Michael Pester Summary Reductive acetogenesis is an important metabolic process in the hindgut of wood-feeding termites. We analysed diversity and expression profiles of the bacterial fhs gene, a marker gene encoding a key enzyme of reductive acetogenesis, formyl tetrahydrofolate synthetase (FTHFS), to identify the active homoacetogenic populations in representatives of three different termite families. Clone libraries of polymerase chain reaction-amplified fhs genes from hindgut contents of Reticulitermes santonensis (Rhinotermitidae) and Cryptotermes secundus (Kalotermitidae) were compared with previously published fhs gene sequences obtained from Zootermopsis nevadensis (Termopsidae). Most of the clones clustered among the ,Termite Treponemes', which comprise also the fhs genes of the two strains of the homoacetogenic spirochaete Treponema primitia. The high abundance of treponemal fhs genes in all clone libraries was in agreement with the results of DNA-based terminal-restriction fragment length polymorphism (T-RFLP) analysis. Moreover, in mRNA-based T-RFLP profiles of the three termites, only expression of fhs genes of ,Termite Treponemes' was detected, albeit at different levels. In C. secundus, only one of the dominating phylotypes was transcribed, while in R. santonensis, the apparently less abundant fhs genes were the most actively expressed. Our results strongly support the hypothesis that spirochaetes are responsible for reductive acetogenesis in the hindgut of lower, wood-feeding termites. [source] Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. KuntzeENVIRONMENTAL TOXICOLOGY, Issue 4 2007Prashant Mohanpuria Abstract Glutathione, a tripeptide with sulfhydryl (-SH) group is a very crucial compound primarily involved in redox balance maintenance of the cellular environment. In this study, we monitored the influence of Cd exposure on the transcript levels of glutathione metabolic genes in bud tissues, the youngest leaf, of Camellia sinensis L. In addition, some physiochemical parameters were also studied. Cd exposure decreased chlorophyll and protein contents, while increase was observed in lipid peroxidation upon Cd treatments. These changes were found to be concentration and duration dependent, indicating the occurrence of oxidative stress upon Cd exposure. The transcript levels of glutathione biosynthetic genes viz. ,-glutamylcysteine synthetase (,-ECS) and glutathione synthetase (GSHS) increased upon Cd exposure. Furthermore, transcript levels of glutathione reductase (GR), an enzyme involved in reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH), also showed upregulation on Cd exposure. However, the transcript levels of glutathione-S-transferase (GST), an enzyme involved in forming metal,GSH complex and help in sequestration of high levels of metal ions to vacuole, did not show any change on Cd treatment. This study document that Cd exposure induces oxidative stress in Camellia sinensis and the upregulation in transcript levels of glutathione metabolic genes except GST have suggested the role of these enzymes in the protection of plants from high level Cd exposure. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 368,374, 2007. [source] Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regionsENVIRONMENTAL TOXICOLOGY, Issue 3 2005Youness Ouahid Abstract Reliable cyanotoxin monitoring in water reservoirs is difficult because of, among other reasons, unpredictable changes in cyanobacteria biomass, toxin production, and inadequate sampling frequency. Therefore, it would be useful to identify potentially microcystin-producing strains of cyanobacterial populations in field samples. With this aim, we developed a methodology to distinguish microcystin-producing from non-producing Microcystis strains by amplifying six characteristic segments of the microcystin synthetase mcy cluster, three corresponding to the nonribosomal peptide synthetase, genes mcyA, mcyB, and mcyC, and three to the polyketide synthase, genes mcyD, mcyE, and mcyG. For this purpose five new primer sets were designed and tested using purified DNA, cultured cells, and field colonies as DNA sources. Simultaneous amplification of several genes in multipex PCR reactions was performed in this study. The results obtained showed that: (i) the expected specific amplicons were obtained with all microcystin-producing strains but not with nonproducing strains; (ii) cells could be directly used as DNA templates, 2000 cells being a sufficient number in most cases; (iii) simultaneous amplification of several gene regions is feasible both with cultured cells and with field colonies. Our data support the idea that the presence of various mcy genes in Microcystis could be used as a criterion for ascribing potential toxigenicity to field strains, and the possibility of applying whole-cell assays for the simultaneous amplification of various genes may contribute significantly to simplifying toxigenicity testing. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 235,242, 2005. [source] Absence of phosphoglucose isomerase-1 in retinal photoreceptor, pigment epithelium and Muller cellsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004Simon N. Archer Abstract Macroarray analysis was used to compare equal amounts of cDNA from wild-type and rd/rd (retinal degeneration) mice, collected at P90 when photoreceptor degeneration is virtually complete. A stronger signal for the glycolytic enzyme phosphoglucose isomerase (Gpi1) was observed in the rd/rd sample. Extracellularly, Gpi1 may act as a cytokine, independently described as neuroleukin and autocrine motility factor. Retinal Gpi1 expression was investigated by Northern and Western blot analysis and immunohistochemistry. Double-labelling was performed with antibodies against Gpi1 and calbindin-D, glutamine synthetase, RPE65, calretinin and ultraviolet opsin in order to provide positive cell type identification. Northern and Western blots showed double expression levels per microgram of RNA and protein, respectively, in the rd/rd retina compared with wild-type. However, the total amount of Gpi1 protein per retina was indistinguishable. Gpi1 immunoreactivity was found in ganglion, amacrine, horizontal and bipolar cells, but not in rods, cones, pigment epithelium and Muller cells. This distribution explains why the absolute amounts of Gpi1 protein were not appreciably different between wild-type and the rd/rd phenotype, where rods and cones are absent, whilst the relative contribution of Gpi1 to the total protein and RNA pools differed. Some extracellular immunoreactivity was observed in the photoreceptor matrix around cones in freshly fixed tissue only, which could possibly reflect a role as a cytokine. We propose that glycolysis in Gpi1-negative cells proceeds entirely through the pentose phosphate pathway, creating NADPH at the cost of organic carbon. We hypothesize that the unique metabolic needs of photoreceptors justify this trade-off. [source] Flexibility and communication within the structure of the Mycobacterium smegmatis methionyl-tRNA synthetaseFEBS JOURNAL, Issue 19 2010Henrik Ingvarsson Two structures of monomeric methionyl-tRNA synthetase, from Mycobacterium smegmatis, in complex with the ligands methionine/adenosine and methionine, were analyzed by X-ray crystallography at 2.3 Å and at 2.8 Å, respectively. The structures demonstrated the flexibility of the multidomain enzyme. A new conformation of the structure was identified in which the connective peptide domain bound more closely to the catalytic domain than described previously. The KMSKS(301-305) loop in our structures was in an open and inactive conformation that differed from previous structures by a rotation of the loop of about 90° around hinges located at Asn297 and Val310. The binding of adenosine to the methionyl-tRNA synthetase methionine complex caused a shift in the KMSKS domain that brought it closer to the catalytic domain. The potential use of the adenosine-binding site for inhibitor binding was evaluated and a potential binding site for a specific allosteric inhibitor was identified. [source] Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP)FEBS JOURNAL, Issue 17 2009Michiko Konno The ATP,pyrophosphate exchange reaction catalyzed by Arg-tRNA, Gln-tRNA and Glu-tRNA synthetases requires the assistance of the cognate tRNA. tRNA also assists Arg-tRNA synthetase in catalyzing the pyrophosphorolysis of synthetic Arg-AMP at low pH. The mechanism by which the 3,-end A76, and in particular its hydroxyl group, of the cognate tRNA is involved with the exchange reaction catalyzed by those enzymes has yet to be established. We determined a crystal structure of a complex of Arg-tRNA synthetase from Pyrococcus horikoshii, tRNAArgCCU and an ATP analog with Rfactor = 0.213 (Rfree = 0.253) at 2.0 Å resolution. On the basis of newly obtained structural information about the position of ATP bound on the enzyme, we constructed a structural model for a mechanism in which the formation of a hydrogen bond between the 2,-OH group of A76 of tRNA and the carboxyl group of Arg induces both formation of Arg-AMP (Arg + ATP , Arg-AMP + pyrophosphate) and pyrophosphorolysis of Arg-AMP (Arg-AMP + pyrophosphate , Arg + ATP) at low pH. Furthermore, we obtained a structural model of the molecular mechanism for the Arg-tRNA synthetase-catalyzed deacylation of Arg-tRNA (Arg-tRNA + AMP , Arg-AMP + tRNA at high pH), in which the deacylation of aminoacyl-tRNA bound on Arg-tRNA synthetase and Glu-tRNA synthetase is catalyzed by a quite similar mechanism, whereby the proton-donating group (,NH,C+(NH2)2 or ,COOH) of Arg and Glu assists the aminoacyl transfer from the 2,-OH group of tRNA to the phosphate group of AMP at high pH. [source] Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leavesFEBS JOURNAL, Issue 12 2008Marie-Hélène Valadier We investigated the role of glutamine synthetases (cytosolic GS1 and chloroplast GS2) and glutamate synthases (ferredoxin-GOGAT and NADH-GOGAT) in the inorganic nitrogen assimilation and reassimilation into amino acids between bundle sheath cells and mesophyll cells for the remobilization of amino acids during the early phase of grain filling in Zea mays L. The plants responded to a light/dark cycle at the level of nitrate, ammonium and amino acids in the second leaf, upward from the primary ear, which acted as the source organ. The assimilation of ammonium issued from distinct pathways and amino acid synthesis were evaluated from the diurnal rhythms of the transcripts and the encoded enzyme activities of nitrate reductase, nitrite reductase, GS1, GS2, ferredoxin-GOGAT, NADH-GOGAT, NADH-glutamate dehydrogenase and asparagine synthetase. We discerned the specific role of the isoproteins of ferredoxin and ferredoxin:NADP+ oxidoreductase in providing ferredoxin-GOGAT with photoreduced or enzymatically reduced ferredoxin as the electron donor. The spatial distribution of ferredoxin-GOGAT supported its role in the nitrogen (re)assimilation and reallocation in bundle sheath cells and mesophyll cells of the source leaf. The diurnal nitrogen recycling within the plants took place via the specific amino acids in the phloem and xylem exudates. Taken together, we conclude that the GS1/ferredoxin-GOGAT cycle is the main pathway of inorganic nitrogen assimilation and recycling into glutamine and glutamate, and preconditions amino acid interconversion and remobilization. [source] The domains carrying the opposing activities in adenylyltransferase are separated by a central regulatory domainFEBS JOURNAL, Issue 11 2007Paula Clancy Adenylyltransferase is a bifunctional enzyme that controls the enzymatic activity of dodecameric glutamine synthetase in Escherichia coli by reversible adenylylation and deadenylylation. Previous studies showed that the two similar but chemically distinct reactions are carried out by separate domains within adenylyltransferase. The N-terminal domain carries the deadenylylation activity, and the C-terminal domain carries the adenylylation activity [Jaggi R, van Heeswijk WC, Westerhoff HV, Ollis DL & Vasudevan SG (1997) EMBO J16, 5562,5571]. In this study, we further map the domain junctions of adenylyltransferase on the basis of solubility and enzymatic analysis of truncation constructs, and show for the first time that adenylyltransferase has three domains: the two activity domains and a central, probably regulatory (R), domain connected by interdomain Q-linkers (N-Q1-R-Q2-C). The various constructs, which have the opposing domain and or central domain removed, all retain their activity in the absence of their respective nitrogen status indicator, i.e. PII or PII-UMP. A panel of mAbs to adenylyltransferase was used to demonstrate that the cellular nitrogen status indicators, PII and PII-UMP, probably bind in the central regulatory domain to stimulate the adenylylation and deadenylylation reactions, respectively. In the light of these results, intramolecular signaling within adenylyltransferase is discussed. [source] tmRNA from Thermus thermophilusFEBS JOURNAL, Issue 3 2003Interaction with alanyl-tRNA synthetase, elongation factor Tu The interaction of a Thermus thermophilus tmRNA transcript with alanyl-tRNA synthetase and elongation factor Tu has been studied. The synthetic tmRNA was found to be stable up to 70 °C. The thermal optimum of tmRNA alanylation was determined to be around 50 °C. At 50 °C, tmRNA transcript was aminoacylated by alanyl-tRNA synthetase with 5.9 times lower efficiency (kcat/Km) than tRNAAla, primarily because of the difference in turnover numbers (kcat). Studies on EF-Tu protection of Ala,tmRNA against alkaline hydrolysis revealed the existence of at least two different binding sites for EF-Tu on charged tmRNA. The possible nature of these binding sites is discussed. [source] Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyaseFEBS JOURNAL, Issue 14 2002Tadayoshi Kanao The prokaryotic ATP-citrate lyase is considered to be a key enzyme of the carbon dioxide-fixing reductive tricarboxylic acid (RTCA) cycle. Kinetic examination of the ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola (Cl -ACL), an ,4,4 heteromeric enzyme, revealed that the enzyme displayed typical Michaelis-Menten kinetics toward ATP with an apparent Km value of 0.21 ± 0.04 mm. However, strong negative cooperativity was observed with respect to citrate binding, with a Hill coefficient (nH) of 0.45. Although the dissociation constant of the first citrate molecule was 0.057 ± 0.008 mm, binding of the first citrate molecule to the enzyme drastically decreased the affinity of the enzyme for the second molecule by a factor of 23. ADP was a competitive inhibitor of ATP with a Ki value of 0.037 ± 0.006 mm. Together with previous findings that the enzyme catalyzed the reaction only in the direction of citrate cleavage, these kinetic features indicated that Cl -ACL can regulate both the direction and carbon flux of the RTCA cycle in C. limicola. Furthermore, in order to gain insight on the reaction mechanism, we performed biochemical analyses of Cl -ACL. His273 of the , subunit was indicated to be the phosphorylated residue in the catalytic center, as both catalytic activity and phosphorylation of the enzyme by ATP were abolished in an H273A mutant enzyme. We found that phosphorylation of the subunit was reversible. Nucleotide preference for activity was in good accordance with the preference for phosphorylation of the enzyme. Although residues interacting with nucleotides in the succinyl-CoA synthetase from Escherichia coli were conserved in AclB, AclA alone could be phoshorylated with the same nucleotide specificity observed in the holoenzyme. However, AclB was necessary for enzyme activity and contributed to enhance phosphorylation and stabilization of AclA. [source] Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experimentsFEBS JOURNAL, Issue 22 2001Sébastien Dementin Enzymes MurD, MurE, MurF, folylpolyglutamate synthetase and cyanophycin synthetase, which belong to the Mur synthetase superfamily, possess an invariant lysine residue (K198 in the Escherichia coli MurD numbering). Crystallographic analysis of MurD and MurE has recently shown that this residue is present as a carbamate derivative, a modification presumably essential for Mg2+ binding and acyl phosphate formation. In the present work, the importance of the carbamoylated residue was investigated in MurD, MurE and MurF by site-directed mutagenesis and chemical rescue experiments. Mutant proteins MurD K198A/F, MurE K224A and MurF K202A, which displayed low enzymatic activity, were rescued by incubation with short-chain carboxylic acids, but not amines. The best rescuing agent was acetate for MurD K198A, formate for K198F, and propionate for MurE K224A and MurF K202A. In the last of these, wild-type levels of activity were recovered. A complementarity between the volume of the residue replacing lysine and the length of the carbon chain of the acid was noted. These observations support a functional role for the carbamate in the three Mur synthetases. Experiments aimed at recovering an active enzyme by introducing an acidic residue in place of the invariant lysine residue were also undertaken. Mutant protein MurD K198E was weakly active and was rescued by formate, indicating the necessity of correct positioning of the acidic function with respect to the peptide backbone. Attempts at covalent rescue of mutant protein MurD K198C failed because of its lack of reactivity towards haloacids. [source] Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin)FEBS JOURNAL, Issue 17 2000Mechanism of the cyanophycin synthetase reaction studied with synthetic primers Biosynthesis of the cyanobacterial nitrogen reserve cyanophycin (multi- l -arginyl-poly- l -aspartic acid) is catalysed by cyanophycin synthetase, an enzyme that consists of a single kind of polypeptide. Efficient synthesis of the polymer requires ATP, the constituent amino acids aspartic acid and arginine, and a primer like cyanophycin. Using synthetic peptide primers, the course of the biosynthetic reaction was studied. The following results were obtained: (a) sequence analysis suggests that cyanophycin synthetase has two ATP-binding sites and hence probably two active sites; (b) the enzyme catalyses the formation of cyanophycin-like polymers of 25,30 kDa apparent molecular mass in vitro; (c) primers are elongated at their C-terminus; (d) the constituent amino acids are incorporated stepwise, in the order aspartic acid followed by arginine, into the growing polymer. A mechanism for the cyanophycin synthetase reaction is proposed; (e) the specificity of the enzyme for its amino-acid substrates was also studied. Glutamic acid cannot replace aspartic acid as the acidic amino acid, whereas lysine can replace arginine but is incorporated into cyanophycin at a much lower rate. [source] Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifoliiFEBS JOURNAL, Issue 24 2000Hwan Young Lee A novel gene, matR, located upstream of matABC, transcribed in the opposite direction, and encoding a putative regulatory protein by sequence analysis was discovered from Rhizobium leguminosarum bv. trifolii. The matA, matB, and matC genes encode malonyl-CoA decarboxylase, malonyl-CoA synthetase, and a presumed malonate transporter, respectively. Together, these enzymes catalyze the uptake and conversion of malonate to acetyl-CoA. The deduced amino-acid sequence of matR showed sequence similarity with GntR from Bacillus subtilis in the N-terminal region encoding a helix-turn-helix domain. Electrophoretic mobility shift assay indicated that MatR bound to a fragment of DNA corresponding to the mat promoter region. The addition of malonate or methylmalonate increased the association of MatR and DNA fragment. DNase I footprinting assays identified a MatR binding site encompassing 66 nucleotides near the mat promoter. The mat operator region included an inverted repeat (TCTTGTA/TACACGA) centered ,46.5 relative to the transcription start site. Transcriptional assays, using the luciferase gene, revealed that MatR represses transcription from the mat promoter and malonate alleviates MatR-mediated repression effect on the expression of Pmat -luc+ reporter fusion. [source] |