Synthesis Strategy (synthesis + strategy)

Distribution by Scientific Domains


Selected Abstracts


Organically Functionalized Mesoporous Silica by Co-structure-Directing Route

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
Chuanbo Gao
Abstract This article provides a brief overview of functional mesoporous silica materials synthesized by the co-structure-directing route, which is distinct from conventional synthesis strategies. In these systems, organosilane serves as the co-structure-directing agent (CSDA), which provides critical interactions between the template and organic part of the organosilane to form mesostructures, thus retaining the organic groups on the pore surface after removal of the template by extraction. i) The formation of anionic-surfactant-templated mesoporous silicas (AMSs) has been achieved by the co-structure-directing route, which leads to a variety of mesostructures, porous properties and morphologies. ii) Other co-structure-directing systems for synthesizing mesoporous silicas have also been achieved, including systems using cationic surfactants and non-surfactants, and systems using DNA for constructing nanofibers and DNA,silica liquid crystalline complexes. iii) Evidence for the regular arrangement of functional groups on the pore surface resulted from the co-structure-directing effect has been discussed. Also included is a brief description of the application, future requirements, and trends in the development of mesoporous materials by the co-structure-directing route. [source]


Reaction of Cytidine Nucleotides with Cyanoacetylene: Support for the Intermediacy of Nucleoside-2,,3,-cyclic Phosphates in the Prebiotic Synthesis of RNA

CHEMBIOCHEM, Issue 6 2006
Michael A. Crowe
Abstract A robust and prebiotically plausible synthesis of RNA is a key requirement of the "RNA World" hypothesis, but, to date, no such synthesis has been demonstrated. Monomer synthesis strategies involving attachment of preformed nucleobases to sugars have failed, and, even if activated 5,-nucleotides could be made, the hydrolysis of these intermediates in water makes their efficient oligomerisation appear unlikely. We recently reported a synthesis of cytidine-2,,3,-cyclic phosphate 1 (C>p) in which the nucleobase was assembled in stages on a sugar-phosphate template. However, 2,,3,-cyclic nucleotides (N>p's) also undergo hydrolysis, in this case giving a mixture of the 2,- and 3,-monophosphates. This hydrolysis has previously been seen as making the, otherwise promising, oligomerisation of N>p's seem as unlikely as that of the 5,-activated nucleotides. We now find that cyanoacetylene, the reagent used for the second stage of nucleobase assembly in the synthesis of C>p, also reverses the effect of the hydrolysis by driving efficient cyclisation of C2,p and C3,p back to C>p. Excess cyanoacetylene also derivatises the nucleobase, but this modification is reversible at neutral pH. These findings significantly strengthen the case for N>p's in a prebiotic synthesis of RNA. [source]


Diels,Alder Reactions of Symmetrically 1,4-Disubstituted Dienes: Theoretical Study on the Influence of the Configuration of the Double Bonds on the Regio- and Endoselectivity

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2008
Samira Baki
Abstract It was experimentally shown in Diels-Alder reactions that symmetrically 1,4-disubstituted dienes exhibit high regio- and endoselectivity induced by the (E,Z) configuration of the double bonds. In order to understand the origin of this selectivity, the transition states associated with the reaction between a series of such dienes (R = OMe, CH3, NH2, F, CN) on substituted ethylene (R, = CO2Me, CN, F, OMe) were determined by DFT calculations. If the regioselectivity confirmed by a single-point MP2 calculation is predicted to be good in most cases, its direction remains difficult to predict; the R, group of the dienophile can orient itself toward either the (Z) or the (E) side of the diene. Neither primary nor secondary frontier orbital interactions appear to be able to rationalize these results. They are more likely explained by a delicate balance between steric and electrostatic interactions. This hypothesis is further supported by the calculated reactivity of the (E,E) and (Z,Z) corresponding dienes. In any case, a standard DFT calculation, confirmed by a single-point MP2 step, is likely to provide a reliable guideline for a synthesis strategy that allows the control of up to four stereogenic centres in a single reaction step.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Synthesis of PEOlated Fe3O4@SiO2 Nanoparticles via Bioinspired Silification for Magnetic Resonance Imaging

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2010
Happy Tan
Abstract Inspired by the biosilification process, a highly benign synthesis strategy is successfully developed to synthesize PEOlated Fe3O4@SiO2 nanoparticles (PEOFSN) at room temperature and near-neutral pH. The success of such a strategy lies in the simultaneous encapsulation of Fe3O4 nanocrystals and silica precursors into the core of PEO-based polymeric micelles. The encapsulation results in the formation of a silica shell being confined to the interface between the core and corona of the Fe3O4 -nanocrystal-loaded polymeric micelles. Consequently, the surface of the Fe3O4@SiO2 nanoparticle is intrinsically covered by a layer of free PEO chains, which enable the PEOFSN to be colloidally stable not only at room temperature, but also upon incubation in the presence of proteins under physiological conditions. In addition, the silica shell formation does not cause any detrimental effects to the encapsulated Fe3O4 nanocrystals with respect to their size, morphology, crystallinity, and magnetic properties, as shown by their physicochemical behavior. The PEOFSN are shown to be good candidates for magnetic resonance imaging (MRI) contrast agents as demonstrated by the high r2/r1 ratio with long-term stability under high magnetic field, as well as the lack of cytotoxicity. [source]


Groupwise registration based on hierarchical image clustering and atlas synthesis

HUMAN BRAIN MAPPING, Issue 8 2010
Qian Wang
Abstract Groupwise registration has recently been proposed for simultaneous and consistent registration of all images in a group. Since many deformation parameters need to be optimized for each image under registration, the number of images that can be effectively handled by conventional groupwise registration methods is limited. Moreover, the robustness of registration is at stake due to significant intersubject variability. To overcome these problems, we present a groupwise registration framework, which is based on a hierarchical image clustering and atlas synthesis strategy. The basic idea is to decompose a large-scale groupwise registration problem into a series of small-scale problems, each of which is relatively easy to solve using a general computer. In particular, we employ a method called affinity propagation, which is designed for fast and robust clustering, to hierarchically cluster images into a pyramid of classes. Intraclass registration is then performed to register all images within individual classes, resulting in a representative center image for each class. These center images of different classes are further registered, from the bottom to the top in the pyramid. Once the registration reaches the summit of the pyramid, a single center image, or an atlas, is synthesized. Utilizing this strategy, we can efficiently and effectively register a large image group, construct their atlas, and, at the same time, establish shape correspondences between each image and the atlas. We have evaluated our framework using real and simulated data, and the results indicate that our framework achieves better robustness and registration accuracy compared to conventional methods. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6 2006
Anne Galarneau
Abstract Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (,1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 ,m could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC. [source]


Novel Polyolefins Containing Crystallizable Isotactic Polystyrene Side Chains

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2008
Barbara T. Gall
Abstract Vinyl-terminated isotactic polystyrene macromonomers were copolymerized with ethylene and 1-octene to new polyolefin graft copolymers with crystallizable polystyrene side chains. The iPS content was varied from 4 to 78 wt.-% using different metallocene and halfsandwich catalysts. No solubility problems of the stereoregular macromonomer occured, because iPS does not crystallize during polymerization. In addition the polymers show nanophase separation of the polyolefin backbone and the iPS side chains. The crystallization of iPS, having a melting point of about 200,°C, can be achieved by annealing. This synthesis strategy allows the fabrication of a new class of thermoplastic elastomers with improved heat distortion temperatures. [source]