Home About us Contact | |||
Synthesis Leads (synthesis + lead)
Selected Abstracts3252: Basic mechanisms and factors influencing the neurovascular coupling in the eyeACTA OPHTHALMOLOGICA, Issue 2010G GARHOFER Neuro-vascular coupling is a basic physiological mechanism in the eye that allows for adapting retinal and optic nerve head blood flow to changing metabolic demands, induced by an increase in neural activity. Despite many efforts, the mechanisms that leads to this coupling process are largely unknown. Among others, nitric oxide seems to play an important role in the vasodilatory answer. It has been shown that the unspecific blockade of nitric-oxide syntheses leads to a pronounced reduction of flicker induced vasodilatation in healthy subjects. This indicates that nitric oxide plays an important role in this signaling cascade. Additionally, there is evidence that astrocytes act as a mediator between ganglion cells and blood vessels in the retina. This hypothesis is strengthened by the observation that the presence and distribution of retinal astrocytes correlates with the presence and distribution of retinal blood vessels. This talk will summarize the concept of neuro-vascular coupling in the eye and give an overview about our current understanding of the mechanisms and factors involved in this process. [source] Application of New Organic Fuels in the Direct MgAl2O4 Combustion SynthesisEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2008Robert Iano Abstract The paper presents a new version of MgAl2O4 solution-combustion synthesis, based on the individual reactivity of Mg(NO3)2 and Al(NO3)3 with respect to various fuels. Beside the traditionally used fuels (urea, glycine, ,-alanine), new organic reducing agents [monoethanolamine, triethanolamine, tris(hydroxymethyl)aminomethane and triethylenetetramine] have also been used. The study of the individual reactivities of Mg(NO3)2 and Al(NO3)3 with respect to each of the previously mentioned fuels suggested that there is a predilection of the two metal nitrates for certain fuels: urea is the optimum fuel for Al(NO3)3, whereas monoethanolamine represents the most suitable fuel for Mg(NO3)2. It has been shown by X-ray diffraction and thermal analysis that the use of a single fuel in the MgAl2O4 low-temperature combustion synthesis leads to the formation of an amorphous powder. In this case, the formation of pure crystalline MgAl2O4 requires a subsequent thermal treatment at 900 °C with 1 h soaking time. On the other hand, the use of fuel mixtures containing urea and monoethanolamine or urea and ,-alanine proved to be the rational solution for the direct formation of MgAl2O4. It has been shown that, by using the above-mentioned fuel mixtures, one can obtain pure nanocrystalline MgAl2O4 straight from the combustion reaction, no additional calcination being necessary. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] A novel solid phase approach to Aia-containing peptidesJOURNAL OF PEPTIDE SCIENCE, Issue 1 2009Debby Feytens Abstract A strategy was developed to directly assemble 4-amino-1,2,4,5-tetrahydro-indolo[2,3- c]-azepin-3-ones on solid-phase-supported peptide sequences. Fmoc- and Boc-based strategies were investigated. The Fmoc-strategy approach strongly depends on the peptide sequence being synthesized while the Boc-based synthesis leads to excellent results for all the selected peptide analogs. The method was applied to prepare Aia-analogs of several bioactive peptides containing one or more Trp-residues which were shown to be important for biological recognition. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related CompoundsTHE CHEMICAL RECORD, Issue 3 2002Michael Hanack Abstract An overview of the optical limiting (OL) processes in phthalocyanines and related compounds is presented, particularly a description of the synthesis and relevant optical properties of a series of axially substituted indium(III), titanium(IV), phthalo- and naphthalocyanines, and octaarylporphyrazines. Several techniques, such as transient absorption, Z-scan, and degenerate four-wave mixing, were used to assess the optical properties and OL performance of the investigated compounds. The versatility of the methods of organic synthesis leads to the achievement of effective systems in terms of OL performance through the appropriate combination and modulation of several structural components. The chemistry of the macrocycles here considered allows the variation of the different chemical features, such as the degree of electronic conjugation of the macrocycle and the nature of the ring substituents, the central atom, and the ligands attached to the central atom. © 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 2: 129,148, 2002: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.10024 [source] Correlation between severity of mucopolysaccharidoses and combination of the residual enzyme activity and efficiency of glycosaminoglycan synthesisACTA PAEDIATRICA, Issue 4 2009Ewa Piotrowska Abstract Aim: To develop a method for prediction of severity and clinical course of mucopolysaccharidoses (MPS), a group of inherited metabolic diseases. Methods: Various biochemical and clinical parameters (including estimation of the level of clinical severity, presence of specific mutations, residual enzyme activity, urinary glycosaminoglycan (GAG) excretion, storage of GAG in fibroblasts and efficiency of GAG synthesis) of patients suffering from MPS types II, IIIA and IIIB were determined. Correlations between genetic, biochemical and clinical parameters were tested. Results: We found that efficiency of GAG synthesis may contribute to the level of severity of MPS. It appears that (i) combination of low or average efficiency of GAG synthesis and the presence of residual activity of the enzyme is responsible for an attenuated phenotype, (ii) a lack of detectable residual enzyme activity causes a severe phenotype, irrespective of the efficiency of GAG synthesis and (iii) high efficiency of GAG synthesis leads to a severe phenotype, even if residual enzyme activity is detected. This correlation was found to be valid in 15 out of 17 patients tested. Conclusion: Analysis of efficiency of GAG synthesis and residual activity of the enzyme may be considered for prediction of severity of MPS patients' clinical phenotypes. [source] |