Home About us Contact | |||
Synthase Activation (synthase + activation)
Selected AbstractsCaffeine and theophylline block insulin-stimulated glucose uptake and PKB phosphorylation in rat skeletal musclesACTA PHYSIOLOGICA, Issue 1 2010A. J. Kolnes Abstract Aim:, Caffeine and theophylline inhibit phosphatidylinositol 3-kinase (PI3-kinase) activity and insulin-stimulated protein kinase B (PKB) phosphorylation. Insulin-stimulated glucose uptake involves PI3-kinase/PKB, and the aim of the present study was to test the hypothesis that caffeine and theophylline inhibit insulin-stimulated glucose uptake in skeletal muscles. Methods:, Rat epitrochlearis muscles and soleus strips were incubated with insulin and different concentrations of caffeine and theophylline for measurement of glucose uptake, force development and PKB phosphorylation. The effect of caffeine was also investigated in muscles stimulated electrically. Results:, Caffeine and theophylline completely blocked insulin-stimulated glucose uptake in both soleus and epitrochlearis muscles at 10 mm. Furthermore, insulin-stimulated PKB Ser473 and Thr308 and GSK-3, Ser9 phosphorylation were blocked by caffeine and theophylline. Caffeine reduced and theophylline blocked insulin-stimulated glycogen synthase activation. Caffeine stimulates Ca2+ release and force development increased rapidly to 10,20% of maximal tetanic contraction. Dantrolene (25 ,m), a well-known inhibitor of Ca2+ -release, prevented caffeine-induced force development, but caffeine inhibited insulin-stimulated glucose uptake in the presence of dantrolene. Contraction, like insulin, stimulates glucose uptake via translocation of glucose transporter-4 (GLUT4). Caffeine and theophylline reduced contraction-stimulated glucose uptake by about 50%, whereas contraction-stimulated glycogen breakdown was normal. Conclusion:, Caffeine and theophylline block insulin-stimulated glucose uptake independently of Ca2+ release, and the likely mechanism is via blockade of insulin-stimulated PI3-kinase/PKB activation. Caffeine and theophylline also reduced contraction-stimulated glucose uptake, which occurs independently of PI3-kinase/PKB, and we hypothesize that caffeine and theophylline also inhibit glucose uptake in skeletal muscles via an additional and hitherto unknown molecule involved in GLUT4 translocation. [source] Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus musclesACTA PHYSIOLOGICA, Issue 2 2009Y.-C. Lai Abstract Aim:, The aim of this study was to investigate the effect of glycogen content on glycogen synthase (GS) activation and phosphorylation in the slow-twitch soleus muscles after contraction, during insulin stimulation and when these two stimuli were combined. Methods:, Glycogen content was manipulated in vivo with 24 h fasting and fasting followed by 24 h refeeding. Soleus strips were electrically stimulated for 30 min in vitro, and GS activation and phosphorylation were investigated after an additional 30 min incubation with or without insulin. Results:, Fasting reduced glycogen content in soleus muscle by 40% and refeeding enhanced by 40%, compared to rats with free access to chow. Insulin-stimulated GS fractional activity was inversely correlated with glycogen content (R = ,0.95, P < 0.001, n = 24) and rate of glycogen synthesis was also inversely correlated with glycogen content (R = ,0.70, P < 0.001, n = 36). After contraction, GS fractional activity was increased to similar levels in muscles with low, normal and high glycogen content; rate of glycogen synthesis after contraction was also similar. After contraction, insulin additively increased GS activation at all glycogen contents. Group means of GS fractional activity was inversely correlated with GS Ser641 (R = ,0.93, P < 0.001) and Ser645,649,653,657 (R = ,0.85, P < 0.001) phosphorylation, but not with Ser7 phosphorylation. Conclusion:, Glycogen content regulates insulin- but not contraction-stimulated GS activation and glycogen synthesis in soleus muscles. Furthermore, phosphorylation of GS Ser641 and Ser645,649,653,657 seems to regulate GS activity in soleus. [source] Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulationTHE JOURNAL OF PHYSIOLOGY, Issue 12 2009Kieran E. Brack Information regarding vagal innervation in the cardiac ventricle is limited and the direct effect of vagal stimulation on ventricular myocardial function is controversial. We have recently provided indirect evidence that the anti-fibrillatory effect of vagus nerve stimulation on the ventricle is mediated by nitric oxide (NO). The aim of this study was to provide direct evidence for the release of nitric oxide in the cardiac ventricle during stimulation of the efferent parasympathetic fibres of the cervical vagus nerve. The isolated innervated rabbit heart was employed with the use of the NO fluorescent indicator 4,5-diaminofluorescein diacetate (DAF-2 DA) during stimulation of the cervical vagus nerves and acetylcholine perfusion in the absence and presence of the non-specific NO synthase inhibitor NG -nito- l- arginine (l- NNA) and the neuronal NO synthase selective inhibitor 1-(2-trifluormethylphenyl)imidazole (TRIM). Using the novel fluorescence method in the beating heart, we have shown that NO-dependent fluorescence is increased by 0.92 ± 0.26, 1.20 ± 0.30 and 1.91 ± 0.27% (during low, medium and high frequency, respectively) in the ventricle in a stimulation frequency-dependent manner during vagus nerve stimulation, with comparable increases seen during separate stimulation of the left and right cervical vagus nerves. Background fluorescence is reduced during perfusion with l- NNA and the increase in fluorescence during high frequency vagal stimulation is inhibited during perfusion with both l- NNA (1.97 ± 0.35% increase before l- NNA, 0.00 ± 0.02% during l- NNA) and TRIM (1.78 ± 0.18% increase before TRIM, ,0.11 ± 0.08% during TRIM). Perfusion with 0.1 ,m acetylcholine increased NO fluorescence by 0.76 ± 0.09% which was blocked by l- NNA (change of 0.00 ± 0.03%) but not TRIM (increase of 0.82 ± 0.21%). Activation of cardiac parasympathetic efferent nerve fibres by stimulation of the cervical vagus is associated with NO production and release in the ventricle of the rabbit, via the neuronal isoform of nitric oxide synthase. [source] Mechano-biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch-induced activation of resident myogenic stem cellsANIMAL SCIENCE JOURNAL, Issue 1 2010Ryuichi TATSUMI ABSTRACT In undamaged postnatal muscle fibers with normal contraction and relaxation activities, quiescent satellite cells of resident myogenic stem cells are interposed between the overlying external lamina and the sarcolemma of a subjacent mature muscle fiber. When muscle is injured, exercised, overused or mechanically stretched, these cells are activated to enter the cell proliferation cycle, divide, differentiate, and fuse with the adjacent muscle fiber, and are responsible for regeneration and work-induced hypertrophy of muscle fibers. Therefore, a mechanism must exist to translate mechanical changes in muscle tissue into chemical signals that can activate satellite cells. Recent studies of satellite cells or single muscle fibers in culture and in vivo demonstrated the essential role of hepatocyte growth factor (HGF) and nitric oxide (NO) radical in the activation pathway. These experiments have also reported that mechanically stretching satellite cells or living skeletal muscles triggers the activation by rapid release of HGF from its extracellular tethering and the subsequent presentation to the receptor c-met. HGF release has been shown to rely on calcium-calmodulin formation and NO radical production in satellite cells and/or muscle fibers in response to the mechanical perturbation, and depend on the subsequent up-regulation of matrix metalloproteinase (MMP) activity. These results indicate that the activation mechanism is a cascade of events including calcium ion influx, calcium-calmodulin formation, NO synthase activation, NO radical production, MMP activation, HGF release and binding to c-met. Better understanding of ,mechano-biology' on the satellite cell activation is essential for designing procedures that could enhance muscle growth and repair activities in meat-animal agriculture and also in neuromuscular disease and aging in humans. [source] |