Synergic Effects (synergic + effects)

Distribution by Scientific Domains


Selected Abstracts


Combining herbal treatment with electroacupuncture has no synergic effects on the parameters of obesity

FOCUS ON ALTERNATIVE AND COMPLEMENTARY THERAPIES AN EVIDENCE-BASED APPROACH, Issue 2006
SK Lee
[source]


Hypolipidaemic mechanisms of action of CM108 (a flavone derivative) in hyperlipidaemic rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2008
Wei Ji
ABSTRACT In the present study, the molecular mechanisms by which CM108, a flavone derivative, improves lipid profiles were investigated further. Hyperlipidaemia was induced by oral administration of high cholesterol and fat. After 4 weeks of treatment, the lipid levels in the serum, liver and faeces were measured and the liver genes involved in lipid metabolism were analysed to explore the molecular mechanisms of lowering lipids. CM108 modulated lipid profiles, including elevating the level of high-density lipoprotein cholesterol (HDL-C; 40%) and reducing serum levels of triglyceride (10%), total cholesterol (10%) and low-density lipoprotein cholesterol (26%). Levels of triglyceride and total cholesterol in the liver were reduced by 18% and 24%, respectively. Increased HDL-C level was attributed to the synergic effects of CM108 in increasing levels of ATP-binding cassette transporter (ABC)A1, apolipoprotein AI and apolipoprotein AII in the liver. Intriguingly, CM108 induced genes, including fatty acid transport protein, acyl-CoA synthetase and lipoprotein lipase that are important for more efficient fatty acid ,-oxidation, thereby reducing serum and liver triglyceride levels. In addition, induction of ABCG5, ABCG8 and cholesterol 7,-hydroxylase contributed to cholesterol metabolism, leading to decreases in serum and liver cholesterol levels. Thus, the genes involved in lipid metabolism were systemically modulated by CM108, which contributed to the improvement of lipid profiles in hyperlipidaemic rats. [source]


In Vitro Antioxidant and In Vivo Photoprotective Effects of an Association of Bioflavonoids with Liposoluble Vitamins

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
Patrícia M. B. G. Maia Campos
ABSTRACT A new tendency in cosmetic formulations is the association of botanical extracts and vitamins to improve skin conditions by synergic effects. The objective of this study was to determine the antioxidant activity of associated bioflavonoids, retinyl palmitate (RP), tocopheryl acetate (TA) and ascorbyl tetra-isopalmitate (ATIP), as well as their photoprotective effects in preventing increased erythema, transepidermal water loss (TEWL) and sunburn cell formation in hairless mouse skin. The antioxidant activity of solutions containing the association or each substance separately was evaluated in vitro by a chemiluminescence assay. The photoprotective effect was evaluated by means of in vivo tests. Dorsal skin of hairless mice was treated daily by topical applications for 5 days with formulations containing or not containing (vehicle) the flavonoid-vitamins association (5%). The skin was irradiated (UVA/B) 15 minutes after the last application. The results showed that bioflavonoids had in vitro antioxidant properties and also that when they were associated with vitamins their antioxidant activity was more pronounced. On the other hand, erythema and UV damage to the permeability barrier function (TEWL) was not significantly reduced by previous treatment with the flavonoid-vitamin-association formulations, when compared to the irradiated vehicle-treated area. However, the treatment protected the skin from UV damage because it reduced the number of sunburn cells, when compared to the vehicle-treated area. Finally, the association of vitamins and bioflavonoids added to a dermocosmetic formulation showed a relevant biological activity in terms of photoprotection, because the association of bioflavonoids and vitamins acted by different mechanisms, such as antioxidation and absorption of UV radiation, which suggests its use in antiaging and photoprotective products. [source]


Dynamic culture of droplet-confined cell arrays

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Elisa Cimetta
Abstract Responding to the need of creating an accurate and controlled microenvironment surrounding the cell while meeting the requirements for biological processes or pharmacological screening tests, we aimed at designing and developing a microscaled culture system suitable for analyzing the synergic effects of extracellular matrix proteins and soluble environments on cell phenotype in a high-throughput fashion. We produced cell arrays deposing micrometer-scale protein islands on hydrogels using a robotic DNA microarrayer, constrained the culture media in a droplet-like volume and developed a suitable perfusion system. The droplet-confined cell arrays were used either with conventional culture methods (batch operating system) or with automated stable and constant perfusion (steady-state operating system). Mathematical modeling assisted the experimental design and assessed efficient mass transport and proper fluidodynamic regimes. Cells cultured on arrayed islands (500 ,m diameter) maintained the correct phenotype both after static and perfused conditions, confirmed by immunostaining and gene expression analyses through total RNA extraction. The mathematical model, validated using a particle tracking experiment, predicted the constant value of velocities over the cell arrays (less than 10% variation) ensuring the same mass transport regime. BrdU analysis on an average of 96 cell spots for each experimental condition showed uniform expression inside each cell island and low variability in the data (average of 13%). Perfused arrays showed longer doubling times when compared with static cultures. In addition, perfused cultures showed a reduced variability in the collected data, allowing to detect statistically significant differences in cell behavior depending on the spotted ECM protein. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibiae

CLINICAL ORAL IMPLANTS RESEARCH, Issue 3 2007
Jo-Young Suh
Abstract Objective: The purpose of this study was to investigate the effects of a nanostructured calcium coating on the surfaces of blasted Ti implants on peri-implant bone formation in the rabbit tibiae. Material and methods: Threaded implants (3.75 mm in diameter, 6 mm in length) were roughened by hydroxyapatite (HA) blasting (control; blasted implants). The implants were then hydrothermally treated in a Ca-containing solution for 24 h to prepare Ca-incorporated Ti surfaces (experimental; blasted/Ca implants). Surface characterizations were performed by scanning electron microscopy and stylus profilometry before and after Ca coating. Forty-two implants (21 control and 21 experimental) were placed in the proximal tibiae of seven New Zealand White rabbits. Each rabbit received six implants. To evaluate the effects of the nanostructured Ca coating on the peri-implant bone-healing response, removal torque tests and histomorphometric analyses were performed 6 weeks after surgery. Results: The Ca coating did not significantly change the surface properties produced by blasting at the micron level. Histologically, active bone apposition was observed in the blasted/Ca implants in the marrow space. Compared with the blasted implants, the blasted/Ca implants showed significantly increased bone-to-implant contact over the total implant length (P<0.01) and greater mean removal torque values (P<0.05). Discussion and conclusion: The nanostructured, Ca-incorporated surface significantly enhanced the peri-implant bone-healing response of HA-blasted Ti implants. It may be concluded that the use of nanostructured, Ca-coated surfaces may have synergic effects in enhancing osseointegration of blasted Ti implants due to their micron-scaled surface properties and biologically active surface chemistry. [source]