Home About us Contact | |||
Synchrotron Powder Diffraction (synchrotron + powder_diffraction)
Kinds of Synchrotron Powder Diffraction Terms modified by Synchrotron Powder Diffraction Selected AbstractsThe Microstructure of Biogenic Calcite: A View by High-Resolution Synchrotron Powder Diffraction,ADVANCED MATERIALS, Issue 18 2006B. Pokroy Biogenic calcite obtained from different mollusk shells is subjected to heat treatments at elevated temperatures and structurally analyzed by high-resolution synchrotron X-ray powder diffraction. Remarkable broadening of diffraction peaks in samples annealed at temperatures above 200,°C is observed (see figure), indicating heat-induced degradation of intra-crystalline proteins occluded in the mineral lattice during biomineralization. [source] Tricalcium Silicate T1 and T2 Polymorphic Investigations: Rietveld Refinement at Various Temperatures Using Synchrotron Powder DiffractionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2004Vanessa K. Peterson The lattice parameters, cell volume, and structure of a sample of phase pure triclinic tricalcium silicate were determined using in situ, high-temperature synchrotron powder diffraction and full-profile Rietveld refinement. The temperature range covered was from ambient to 740°C. Evidence of superstructure was found. The T2 type structure with disordered SiO4 tetrahedra was observed, and an average structure for the subcell (P, a= 11.7416(2) Å, b= 14.2785(2) Å, c= 13.7732(2) Å, ,= 105.129(1)°, ,= 94.415(1)°, and ,= 89.889(1)°) is presented. Differential thermal analysis and X-ray fluorescence was also performed. [source] Crystal Structure and Site Preference of Ba-Doped ,-Tricalcium Phosphate (Ca1-xBax)3(PO4)2 Through High-Resolution Synchrotron Powder Diffraction (x = 0.05 to 0.15).CHEMINFORM, Issue 42 2007Masatomo Yashima Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Mixed-Anion and Mixed-Cation Borohydride KZn(BH4)Cl2: Synthesis, Structure and Thermal DecompositionEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2010Dorthe B. Ravnsbæk Abstract KZn(BH4)Cl2, synthesized for the first time, contains a heteroleptic complex anion [Zn(BH4)Cl2],, extending the structural diversity of metal borohydrides. In-situ synchrotron powder diffraction, NMR and Raman spectroscopy were used to characterize KZn(BH4)Cl2 and to evaluate the mechanism for its thermal decomposition. The title compound decomposes at a significantly lower temperature than KBH4 and may be used for inspiration for the design of novel hydrogen storage materials. Combining different ligands in modified metal borohydrides is proposed as a way to adjust stability with respect to hydrogen desorption. [source] Structure of the quaternary alloy Zn0.6Mn0.4In2S4 from synchrotron powder diffraction and electron transmission microscopyJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2006Asiloé J. Mora The aim of the present work was to determine the structure of the quaternary alloy Zn0.6Mn0.4In2S4 and to locate the Mn2+. This was accomplished by means of powder synchrotron X-ray diffraction, high-resolution microscopy and convergent-beam electron diffraction (CBED). The powder X-ray diffraction pattern was indexed in a rhombohedral cell, with cell constants a = 3.875,(2), c = 37.208,(4),Å, and possible space groups Rm or R3m. Rietveld refinements using different cationic arrangements in these space groups were performed. A model in space group R3m, in which the tetrahedral and octahedral sites were occupied by different proportions of Zn, Mn and In atoms, gave the best result. The Rietveld refinement of this model led to figures of merit Rwp = 9.8%, Rp = 9.1% and ,2 = 11.1. Selected-area electron diffraction patterns and high-resolution transmission electron micrographs along [001] reveal the rhombohedral configuration. CBED patterns perpendicular to [001], showing the distinctive 3m symmetry, confirmed space group R3m and the breaking of the centrosymmetry of the parent compound, ZnIn2S4. [source] Performance of a new furnace for high-resolution synchrotron powder diffraction up to 1900,K: application to determine electron density distribution of the cubic CaTiO3 perovskite at 1674,KJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5 2004Masatomo Yashima Accurate crystal structure analysis at high temperatures is an important challenge in science and technology. A new electric furnace for the measurement of high-resolution (,d/d = 0.03%) synchrotron radiation powder diffraction profiles from materials at high temperatures (up to 1900,K in air) has been designed and fabricated. This furnace consists of a ceramic refractory with MoSi2 heaters, an aluminium body cooled by flowing water, and a sample stage with a spinner and a controller for sample-height adjustment. In situ synchrotron powder diffraction measurement for a calcium titanate perovskite specimen at 1674,K has been performed using the furnace at beamline 3A of the Photon Factory. The electron density distribution of the cubic perovskite at 1674,K was successfully obtained using a combination of Rietveld refinement, the maximum-entropy method (MEM) and MEM-based pattern-fitting techniques. The Ti atoms exhibit covalent bonding with the O atoms in the cubic CaTiO3 perovskite at this temperature, while the Ca atoms are ionic. These results indicate that the new furnace yields high-quality data for accurate crystal structure analysis. [source] Instrument line-profile synthesis in high-resolution synchrotron powder diffractionJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2003O. Masson An accurate method for synthesizing the instrumental line profile of high-resolution synchrotron powder diffraction instruments is presented. It is shown that the instrumental profile can be modelled by the convolution of four physical aberration functions: the equatorial intensity distribution, the monochromator and analyser transfer functions, and the axial divergence aberration function. Moreover, each equatorial aberration is related to an angle-independent function by a scale transform factor. The principles of the instrument line-profile calculation are general. They are applied in the case of the angle-dispersive powder X-ray diffraction beamline BM16 at the ESRF. The effects of each optical element on the overall instrument profile are discussed and the importance of the quality of the different optical elements of the instrument is emphasized. Finally, it is shown that the high resolution combined with the precise modelling of the instrument profile shape give access to a particle size as large as 3,µm. [source] Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivativesJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2000Anisotropic peak broadening in hydrogen-cycled hexagonal LaNi5 and substitutional derivatives has been studied by means of synchrotron powder diffraction. The data have been analysed by a local lattice parameter variation method implemented in a Rietveld code and by an individual profile fitting using a dislocation peak broadening model. Two main dislocation systems, both with Burgers vector 1/3,110,, are activated by misfit of the lattice parameters between the intermetallic compounds and their hydrides. Two types of diffraction peak broadening effect were observed as a function of the substitution in LaNi5: (i) a decrease or disappearance of the broadening related to the decrease of the total dislocation density and (ii) a change in the anisotropy of the broadening related to the change of the nature of the dislocation system involved. The latter effect was attributed to a change in shape of the hydride precipitates. [source] Tricalcium Silicate T1 and T2 Polymorphic Investigations: Rietveld Refinement at Various Temperatures Using Synchrotron Powder DiffractionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2004Vanessa K. Peterson The lattice parameters, cell volume, and structure of a sample of phase pure triclinic tricalcium silicate were determined using in situ, high-temperature synchrotron powder diffraction and full-profile Rietveld refinement. The temperature range covered was from ambient to 740°C. Evidence of superstructure was found. The T2 type structure with disordered SiO4 tetrahedra was observed, and an average structure for the subcell (P, a= 11.7416(2) Å, b= 14.2785(2) Å, c= 13.7732(2) Å, ,= 105.129(1)°, ,= 94.415(1)°, and ,= 89.889(1)°) is presented. Differential thermal analysis and X-ray fluorescence was also performed. [source] Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamondACTA CRYSTALLOGRAPHICA SECTION A, Issue 4 2010H. Svendsen Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data using conventional spherical-atom Rietveld refinement. The structure factors are subsequently used for multipole electron-density modelling, and both the structure factors and the derived density are compared with results from ab initio theoretical calculations. Overall, excellent agreement is obtained between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly encountered in single-crystal studies of small-unit-cell inorganic structures can be overcome with synchrotron powder diffraction. It is shown that the standard Hansen,Coppens multipole model is not flexible enough to fit the static theoretical structure factors, whereas fitting of thermally smeared structure factors has much lower residuals. If thermally smeared structure factors (experimental or theoretical) are fitted with a slightly wrong radial model (s2p2 instead of sp3) the radial scaling parameters (`,' parameters) are found to be inadequate and the `error' is absorbed into the atomic displacement parameter. This directly exposes a correlation between electron density and thermal parameters even for a light atom such as carbon, and it also underlines that in organic systems proper deconvolution of thermal motion is important for obtaining correct static electron densities. [source] |