Home About us Contact | |||
Synaptic Vesicles (synaptic + vesicle)
Terms modified by Synaptic Vesicles Selected AbstractsSynaptic vesicle proteins under conditions of rest and activation: Analysis by 2-D difference gel electrophoresisELECTROPHORESIS, Issue 17 2006Jacqueline Burré Abstract Synaptic vesicles are organelles of the nerve terminal that secrete neurotransmitters by fusion with the presynaptic plasma membrane. Vesicle fusion is tightly controlled by depolarization of the plasma membrane and a set of proteins that may undergo post-translational modifications such as phosphorylation. In order to identify proteins that undergo modifications as a result of synaptic activation, we induced massive exocytosis and analysed the synaptic vesicle compartment by benzyldimethyl- n -hexadecylammonium chloride (BAC)/SDS-PAGE and difference gel electrophoresis (DIGE) followed by MALDI-TOF-MS. We identified eight proteins that revealed significant changes in abundance following nerve terminal depolarization. Of these, six were increased and two were decreased in abundance. Three of these proteins were phosphorylated as detected by Western blot analysis. In addition, we identified an unknown synaptic vesicle protein whose abundance increased on synaptic activation. Our results demonstrate that depolarization of the presynaptic compartment induces changes in the abundance of synaptic vesicle proteins and post-translational protein modification. [source] Synaptic Transmission: Inhibition of Neurotransmitter Release by Botulinum ToxinsHEADACHE, Issue 2003Oliver Dolly MSc Botulinum toxin type A, a protein long used in the successful treatment of various dystonias, has a complex mechanism of action that results in muscle relaxation. At the neuromuscular junction, the presynaptic nerve ending is packed with synaptic vesicles filled with acetylcholine, and clustered at the tip of the folds of the postsynaptic muscle membrane are the acetylcholine receptors. Synaptic vesicles fuse with the membrane in response to an elevation of intraneuronal calcium concentration and undergo release of their transmitter by exocytosis. Intracellular proteins that contribute to the fusion of the vesicles with the plasma membrane during exocytosis include synaptosomal protein with a molecular weight of 25 kDa (SNAP-25); vesicle-associated membrane protein (VAMP), also known as synaptobrevin; and syntaxin. Through their proteolytic action on these proteins, botulinum toxins prevent exocytosis, thereby inhibiting the release of acetylcholine. There are 7 serotypes of this toxin,A, B, C1, D, E, F, and G,and each cleaves a different intracellular protein or the same target at distinct bonds. The separate cleavage sites in SNAP-25 for botulinum toxin types A and E contribute to their dissimilar durations of muscle relaxation. This report describes the molecular basis for the inhibition by botulinum toxins of neuroexocytosis and subsequent functional recovery at the neuromuscular junction. [source] Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysisJOURNAL OF NEUROCHEMISTRY, Issue 6 2005Marco Morciano Abstract The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl- n -hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate,polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal. [source] The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formationTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Peter Gardzinski Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma,soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT,C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. [source] Two Mechanisms of Synaptic Vesicle Recycling in Rat Brain Nerve TerminalsJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Michael A. Cousin Abstract: KCl and 4-aminopyridine (4-AP) evoke glutamate release from rat brain cortical nerve terminals by voltage clamping or by Na+ channel-generated repetitive action potentials, respectively. Stimulation by 4-AP but not KCl is largely mediated by protein kinase C (PKC). To determine whether KCl and 4-AP utilise the same mechanism to release glutamate, we correlated glutamate release with release of the hydrophobic synaptic vesicle (SV) marker FM2-10. A strong correlation was observed for increasing concentrations of KCl and after application of phorbol 12-myristate 13-acetate (PMA) or staurosporine. The parallel increase in exocytosis measured by two approaches suggested it occurred by a PKC-independent mechanism involving complete fusion of SVs with the plasma membrane. At low concentrations of 4-AP, alone or with staurosporine, glutamate and FM2-10 release also correlated. However, higher concentrations of 4-AP or of 4-AP plus PMA greatly increased glutamate release but did not further increase FM2-10 release. This divergence suggests that 4-AP recruits an additional mechanism of release during strong stimulation that is PKC dependent and is superimposed upon the first mechanism. This second mechanism is characteristic of kiss-and-run, which is not detectable by styryl dyes. Our data suggest that glutamate release in nerve terminals occurs via two mechanisms: (1) complete SV fusion, which is PKC independent; and (2) a kiss-and-run-like mechanism, which is PKC dependent. Recruitment of a second release mechanism may be a widespread means to facilitate neurotransmitter release in central neurons. [source] Involvement of vH+ -ATPase in synaptic vesicle swellingJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2010Leah Shin Abstract Secretory vesicle swelling is central to cell secretion, but the underlying mechanism of vesicle swelling, particularly synaptic vesicles, is not completely understood. The G,i3 -PLA2-mediated involvement of water channel AQP-1 in the regulation of secretory vesicle swelling in exocrine pancreas and the G,o -mediated AQP-6 involvement in synaptic vesicle swelling in neurons have previously been reported. Furthermore, the role of vH+ -ATPase in neurotransmitter transport into synaptic vesicles has also been shown. Using nanometer-scale precision measurements of isolated synaptic vesicles, the present study reports for the first time the involvement of vH+ -ATPase in GTP-G,o -mediated synaptic vesicle swelling. Results from this study demonstrate that the GTP-G,o -mediated vesicle swelling is vH+ -ATPase dependent and pH sensitive. Zeta potential measurements of isolated synaptic vesicles further demonstrate a bafilomycin-sensitive vesicle acidification, following the GTP-G,o -induced swelling stimulus. Water channels are bidirectional and the vH+ -ATPase inhibitor bafilomycin decreases both the volume of isolated synaptic vesicles and GTP-mastoparan stimulated swelling, suggesting that vH+ -ATPase is upstream of AQP-6, in the pathway leading from G,o -stimulated swelling of synaptic vesicles. Vesicle acidification is therefore a prerequisite for AQP-6-mediated gating of water into synaptic vesicles. © 2009 Wiley-Liss, Inc. [source] The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formationTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Peter Gardzinski Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma,soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT,C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. [source] Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?BIOESSAYS, Issue 4 2004Flavia Valtorta Synaptophysin (Syp) was the first synaptic vesicle (SV) protein to be cloned. Since its discovery in 1985, it has been used by us and by many laboratories around the world as an invaluable marker to study the distribution of synapses in the brain and to uncover the basic features of the life cycle of SVs. Although single gene ablation of Syp does not lead to an overt phenotype, a large body of experimental data both in vitro and in vivo indicate that Syp (alone or in association with homologous proteins) is involved in multiple, important aspects of SV exo-endocytosis, including regulation of SNARE assembly into the fusion core complex, formation of the fusion pore initiating neurotransmitter release, activation of SV endocytosis and SV biogenesis. In this article, we summarise the main results of the studies on Syp carried out by our and other laboratories, and explain why we believe that Syp plays a major role in SV trafficking. BioEssays 26:445,453, 2004. © 2004 Wiley Periodicals, Inc. [source] Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiationDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006Chi Wai Lee Abstract During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Nucleoside transporter and nucleotide vesicular transporter: Two examples of mnemonic regulationDRUG DEVELOPMENT RESEARCH, Issue 1-2 2001Raquel P. Sen Abstract According to their relevant roles in the regulation and availability of extracellular levels of purinergic signals, the nucleoside transporter and the nucleotide vesicular transporter are subject to acute regulation. The plasma membrane nucleoside transporter has been shown to exhibit several regulatory mechanisms, such as regulation by long-term signals, phosphorylation/dephosphorylation processes, and allosteric modulation. The present work reviews studies concerning allosteric modulation of nucleoside and nucleotide vesicular transporters, as the first reported examples of mnemonic behavior in transporter proteins, presenting kinetic and allosteric cooperativity. This fact implies that the protein can exhibit different conformations, each one with specific kinetic parameters. Transport substrates are able to induce slow conformational changes between the different forms of the transporter. This kinetic mechanism can provide several physiological advantages, since it allows strict control of transport capacity by changes in substrate concentrations. This allosteric modulation has been confirmed in several experimental models, the nucleoside transporter in chromaffin and endothelial cells from adrenal medulla and the nucleotide vesicular transporter in the chromaffin cell granules and rat brain synaptic vesicles. Taking into account these considerations, the mnemonic regulation described here could be a widespread mechanism among transporter proteins. Drug Dev. Res. 52:11,21, 2001. © 2001 Wiley-Liss, Inc. [source] Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2010Paula P. Perissinotti Abstract The effects of adenosine on neurotransmission have been widely studied by monitoring transmitter release. However, the effects of adenosine on vesicle recycling are still unknown. We used fluorescence microscopy of FM2-10-labeled synaptic vesicles in combination with intracellular recordings to examine whether adenosine regulates vesicle recycling during high-frequency stimulation at mouse neuromuscular junctions. The A1 adenosine receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine) increased the quantal content released during the first endplate potential, suggesting that vesicle exocytosis can be restricted by endogenous adenosine, which accordingly decreases the size of the recycling vesicle pool. Staining protocols designed to label specific vesicle pools that differ in their kinetics of release showed that all vesicles retrieved in the presence of 8-cyclopentyl-1,3-dipropylxanthine were recycled towards the fast-release pool, favoring its loading with FM2-10 and suggesting that endogenous adenosine promotes vesicle recycling towards the slow-release pool. In accordance with this effect, exogenous applied adenosine prevented the replenishment of the fast-release vesicle pool and, thus, hindered its loading with the dye. We had found that, during high-frequency stimulation, Ca2+ influx through L-type channels directs newly formed vesicles to a fast-release pool (Perissinotti et al., 2008). We demonstrated that adenosine did not prevent the effect of the L-type blocker on transmitter release. Therefore, activation of the A1 receptor promotes vesicle recycling towards the slow-release pool without a direct effect on the L-type channel. Further studies are necessary to elucidate the molecular mechanisms involved in the regulation of vesicle recycling by adenosine. [source] C1 neurons in the rat rostral ventrolateral medulla differentially express vesicular monoamine transporter 2 in soma and axonal compartmentsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2008C. P. Sevigny Abstract Vesicular monoamine transporter 2 (VMAT2) packages biogenic amines into large dense core and synaptic vesicles for either somatodendritic or synaptic release from neurons of the CNS. Whilst the distribution of VMAT2 has been well characterized in many catecholaminergic cell groups, its localization amongst C1 adrenergic neurons in the medulla has not been examined in detail. Within the rostral ventrolateral medulla (RVLM), C1 neurons are a group of barosensitive, adrenergic neurons. Rostral C1 cells project to the thoracic spinal cord and are considered sympathetic premotor neurons. The majority of caudal C1 cells project rostrally to regions such as the hypothalamus. The present study sought to quantitate the somatodendritic expression of VMAT2 in C1 neurons, and to assess the subcellular distribution of the transporter. Immunoreactivity for VMAT2 occurred in 31% of C1 soma, with a high proportion of these in the caudal part of the RVLM. Retrograde tracing studies revealed that only two of 43 bulbospinal C1 neurons contained faint VMAT2-immunoreactivity, whilst 88 ± 5% of rostrally projecting neurons were VMAT2-positive. A lentivirus, designed to express green fluorescent protein exclusively in noradrenergic and adrenergic neurons, was injected into the RVLM to label C1 neurons. Eighty-three percent of C1 efferents that occurred in close proximity to sympathetic preganglionic neurons within the T3 intermediolateral cell column contained VMAT2-immunoreactivity. These data demonstrate differential distribution of VMAT2 within different subpopulations of C1 neurons and suggest that this might reflect differences in somatodendritic vs. synaptic release of catecholamines. [source] L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2008Paula P. Perissinotti Abstract We used fluorescence microscopy of FM dyes-labeled synaptic vesicles and electrophysiological recordings to examine the functional characteristics of vesicle recycling and study how different types of voltage-dependent Ca2+ channels (VDCCs) regulate the coupling of exocytosis and endocytosis at mouse neuromuscular junction. Our results demonstrate the presence of at least two different pools of recycling vesicles: a high-probability release pool (i.e. a fast destaining vesicle pool), which is preferentially loaded during the first 5 s (250 action potentials) at 50 Hz; and a low-probability release pool (i.e. a slow destaining vesicle pool), which is loaded during prolonged stimulation and keeps on refilling after end of stimulation. Our results suggest that a fast recycling pool mediates neurotransmitter release when vesicle use is minimal (i.e. during brief high-frequency stimulation), while vesicle mobilization from a reserve pool is the prevailing mechanism when the level of synaptic activity increases. We observed that specific N- and L -type VDCC blockers had no effect on evoked transmitter release upon low-frequency stimulation (5 Hz). However, at high-frequency stimulation (50 Hz), L -type Ca2+ channel blocker increased FM2-10 destaining and at the same time diminished quantal release. Furthermore, when L -type channels were blocked, FM2-10 loading during stimulation was diminished, while the amount of endocytosis after stimulation was increased. Our experiments suggest that L -type VDCCs promote endocytosis of synaptic vesicles, directing the newly formed vesicles to a high-probability release pool where they compete against unused vesicles. [source] Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by ,-synucleinEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007Soon S. Park Abstract A key challenge in Parkinson's disease research is to understand mechanisms underlying selective degeneration of dopaminergic neurons mediated by genetic factors such as ,-synuclein (,-Syn). The present study examined whether dopamine (DA)-dependent oxidative stress underlies ,-Syn-mediated neurodegeneration using Drosophila primary neuronal cultures. Green fluorescent protein (GFP) was used to identify live dopaminergic neurons in primary cultures prepared on a marked photoetched coverslip, which allowed us to repeatedly access preidentified dopaminergic neurons at different time points in a non-invasive manner. This live tracking of GFP-marked dopaminergic neurons revealed age-dependent neurodegeneration mediated by a mutant human ,-Syn (A30P). Degeneration was rescued when ,-Syn neuronal cultures were incubated with 1 mm glutathione from Day 3 after culturing. Furthermore, depletion of cytoplasmic DA by 100 µm,-methyl- p -tyrosine completely rescued the early stage of ,-Syn-mediated dopaminergic cell loss, demonstrating that DA plays a major role in oxidative stress-dependent neurodegeneration mediated by ,-Syn. In contrast, overexpression of a Drosophila tyrosine hydroxylase gene (dTH1) alone caused DA neurodegeneration by enhanced DA synthesis in the cytoplasm. Age-dependent dopaminergic cell loss was comparable in ,-Syn vs dTH1-overexpressed neuronal cultures, indicating that increased DA levels in the cytoplasm is a critical change downstream of mutant ,-Syn function. Finally, overexpression of a Drosophila vesicular monoamine transporter rescued ,-Syn-mediated neurodegeneration through enhanced sequestration of cytoplasmic DA into synaptic vesicles, further indicating that a main cause of selective neurodegeneration is ,-Syn-induced disruption of DA homeostasis. All of these results demonstrate that elevated cytoplasmic DA is a main factor underlying the early stage of ,-Syn-mediated neurodegeneration. [source] Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulbEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007Marie-Madeleine Gabellec Abstract Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have so far been identified, with distinct expression patterns in the adult brain. Here, we investigated the spatial distribution of the three VGLUTs in the rat olfactory bulb, a brain region containing a variety of glutamate synapses, both axodendritic and dendrodendritic. Using multilabelling confocal microscopy and electron microscopic immunocytochemistry, we showed that each VGLUT isoform has a highly selective localization in olfactory bulb synapses. VGLUT1 is present at dendrodendritic synapses established by the output neurones (mitral and tufted cells) with bulbar interneurones in the glomerular layer and external plexiform layer, as well as in axonal synapses of the granule cell layer. By contrast, VGLUT2 is strongly expressed in axon terminals of olfactory sensory neurones, which establish synapses with second-order neurones in the glomerular neuropil. VGLUT2 is also found in the outer part of the external plexiform layer and in the granule cell layer but colocalizes only partially with VGLUT1. Finally, we showed that VGLUT3 is exclusively located in the glomerular neuropil, where it colocalizes extensively with the vesicular inhibitory amino acid transporter vesicular GABA transporter, suggesting that it is associated with a subset of inhibitory synapses. Together, these observations extend previous findings on VGLUT distribution in the forebrain, and suggest that each VGLUT subtype has a specific function in the distinct features of axodendritic and dendrodendritic synapses that characterize the olfactory bulb circuit. [source] Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reportersEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Kelly L. Rogers Abstract Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+ -sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260,7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ,real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell,cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies. [source] Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Naoki Takada Abstract Activity plays important roles in the formation and maturation of synaptic connections. We examined these roles using solitary neocortical excitatory neurons, receiving only self-generated synaptic inputs, cultured in a microisland with and without spontaneous spike activity. The amplitude of excitatory postsynaptic currents (EPSCs), evoked by applying brief depolarizing voltage pulses to the cell soma, continued to increase from 7 to 14 days in culture. Short-term depression of EPSCs in response to paired-pulse or 10-train-pulse stimulation decreased with time in culture. These developmental changes were prevented when neurons were cultured in a solution containing tetrodotoxin (TTX). The number of functional synapses estimated by recycled synaptic vesicles with FM4-64 was significantly smaller in TTX-treated than control neurons. However, the miniature EPSC amplitude remained unchanged during development, irrespective of activity. Transmitter release probability, assessed by use-dependent blockade of N -methyl- d -aspartate receptor-mediated EPSCs with MK-801, was higher in TTX-treated than control neurons. Therefore, the activity-dependent increase in EPSC amplitude was mainly ascribed to the increase in synapse number, while activity-dependent alleviation of short-term depression was mostly ascribed to the decrease in release probability. The effect of activity blockade on short-term depression, but not EPSC amplitude, was reversed after 4 days of TTX removal, indicating that synapse number and release probability are controlled by activity in very different ways. These results demonstrate that activity regulates the conversion of immature synapses transmitting low-frequency input signals preferentially to mature synapses transmitting both low- and high-frequency signals effectively, which may be necessary for information processing in mature cortex. [source] An immunogold investigation of the distribution of GABA and glycine in nerve terminals on the somata of spherical bushy cells in the anteroventral cochlear nucleus of guinea pigEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2004S. Mahendrasingam Abstract Spherical bushy neurons in the anteroventral cochlear nucleus receive glutamatergic primary terminals from the cochlear nerve and terminals of noncochlear (i.e. nonprimary) origin, many of which colocalize gamma-aminobutyric acid (GABA) and glycine. Here the relationship between GABA and glycine in these terminals has been investigated using postembedding immunogold labelling. A significant negative correlation was found between the density of terminal labelling for GABA and for glycine in four guinea pigs. Terminals could be divided into three categories, GABA-only, glycine-only, or colocalizing depending on whether they had a significantly higher labelling density for either amino acid than the primary terminals. The overall labelling density in all four animals was significantly greater for GABA in GABA-only terminals than colocalizing ones but similar for glycine in both. Within the terminals, the labelling density over synaptic vesicles, nonvesicular regions of cytoplasm and mitochondria was also investigated. No significant difference was detected in the labelling density of vesicles compared with nonvesicular regions for either amino acid. However, a significant difference was found between the overall labelling density over mitochondria and nonvesicular regions for both. There was also significantly more mitochondrial GABA labelling in GABA-only terminals compared to colocalizing terminals but mitochondrial glycine labelling was similar in glycine-only and colocalizing terminals. Thus the level of GABA is higher in single than in colocalizing terminals, particularly in the mitochondria, but similar for glycine in both. It is possible therefore that the presence of glycine affects the level of GABA in the nonprimary terminals but that the presence of GABA does not affect the level of glycine. [source] Cysteine-string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002Michel Eybalin Abstract Cysteine-string protein is a vesicle-associated protein that plays a vital function in neurotransmitter release. We have studied its expression and regulation during cochlear maturation. Both the mRNA and the protein were found in primary auditory neurons and the sensory inner hair cells. More importantly, cysteine-string protein was localized on synaptic vesicles associated with the synaptic ribbon in inner hair cells and with presynaptic differentiations in lateral and medial olivocochlear terminals , the cell bodies of which lie in the auditory brainstem. No cysteine-string protein was expressed by the sensory outer hair cells suggesting that the distinct functions of the two cochlear hair cell types imply different mechanisms of neurotransmitter release. In developmental studies in the rat, we observed that cysteine-string protein was present beneath the inner hair cells at birth and beneath outer hair cells by postnatal day 2 only. We found no expression in the inner hair cells before about postnatal day 12, which corresponds to the period during which the first cochlear action potentials could be recorded. In conclusion, the close association of cysteine-string protein with synaptic vesicles tethered to synaptic ribbons in inner hair cells and its synchronized expression with the appearance and maturation of the cochlear potentials strongly suggest that this protein plays a fundamental role in sound-evoked glutamate release by inner hair cells. This also suggests that this role may be common to ribbon synapses and conventional central nervous system synapses. [source] Contact-dependent aggregation of functional Ca2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2001David A. DiGregorio Abstract To examine whether Ca2+ channels aggregate in a contact-dependent manner, we characterized the distribution of synaptic vesicles and postsynaptic receptors, and compared it to the location of Ca2+ entry sites, in a Xenopus laevis nerve-muscle coculture preparation using a localized Ca2+ detection method. The majority (75%) of Ca2+ entry sites at spontaneously formed nerve,muscle contacts were associated with enhanced immunofluorescence to the synaptic vesicle protein, SV2. In contrast, only 11% of recorded sites without Ca2+ transients exhibited significant SV2 immunofluorescence. When comparing the spatial distribution of synaptic markers with that of Ca2+ entry sites, we found that the majority of Ca2+ entry sites (61%) were associated with both enhanced SV2 immunofluorescence and R-BTX fluorescence, thereby identifying putative neurotransmitter release sites where Ca2+ channels, synaptic vesicles and postsynaptic receptors are colocalized. Using polystyrene beads coated with a heparin binding protein known to mediate in vitro postsynaptic receptor clustering, we show that the location of Ca2+ domains was associated with enhanced SV2 immunofluorescence at neurite-to-bead contacts. We conclude that the localization of functional Ca2+ channels to putative active zones follows a contact-dependent signalling mechanism similar to that known to mediate vesicle aggregation and AChR clustering. [source] Transgenic mouse lines expressing synaptopHluorin in hippocampus and cerebellar cortexGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2005Rikita Araki Abstract We generated six transgenic mouse lines in which synaptopHluorin (SpH), one of green fluorescent protein-based sensors of vesicular exocytosis, was expressed under the control of neuron-specific Thy-1.2 promoter. In situ hybridization study revealed that SpH mRNA was expressed in a broad spectrum of brain regions in four of them, whereas in others it was expressed in the specific regions of the hippocampus. In one particular line, SpH immunoreactivity was specifically observed in the mossy fiber presynaptic terminals of both hippocampus and cerebellar cortex. The fluorescence intensity of these presynaptic terminals was somewhat decreased by acidic buffer superfusion and greatly increased by vesicular neutralization of pH, indicating that the SpH molecules are mainly distributed in the synaptic vesicles. The exocytosis-dependent fluorescence increment was measured upon activation of a single presynaptic terminal. These transgenic lines are expected to facilitate morphological and physiological studies of presynaptic terminals in a variety of regions of the brain. genesis 42:53,60, 2005. © 2005 Wiley-Liss, Inc. [source] Synaptic Transmission: Inhibition of Neurotransmitter Release by Botulinum ToxinsHEADACHE, Issue 2003Oliver Dolly MSc Botulinum toxin type A, a protein long used in the successful treatment of various dystonias, has a complex mechanism of action that results in muscle relaxation. At the neuromuscular junction, the presynaptic nerve ending is packed with synaptic vesicles filled with acetylcholine, and clustered at the tip of the folds of the postsynaptic muscle membrane are the acetylcholine receptors. Synaptic vesicles fuse with the membrane in response to an elevation of intraneuronal calcium concentration and undergo release of their transmitter by exocytosis. Intracellular proteins that contribute to the fusion of the vesicles with the plasma membrane during exocytosis include synaptosomal protein with a molecular weight of 25 kDa (SNAP-25); vesicle-associated membrane protein (VAMP), also known as synaptobrevin; and syntaxin. Through their proteolytic action on these proteins, botulinum toxins prevent exocytosis, thereby inhibiting the release of acetylcholine. There are 7 serotypes of this toxin,A, B, C1, D, E, F, and G,and each cleaves a different intracellular protein or the same target at distinct bonds. The separate cleavage sites in SNAP-25 for botulinum toxin types A and E contribute to their dissimilar durations of muscle relaxation. This report describes the molecular basis for the inhibition by botulinum toxins of neuroexocytosis and subsequent functional recovery at the neuromuscular junction. [source] Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapsesHIPPOCAMPUS, Issue 10 2006Tatiana Kovalenko Abstract Relatively mild ischemic episode can initiate a chain of events resulting in delayed cell death and significant lesions in the affected brain regions. We studied early synaptic modifications after brief ischemia modeled in rats by transient vessels' occlusion in vivo or oxygen,glucose deprivation in vitro and resulting in delayed death of hippocampal CA1 pyramidal cells. Electron microscopic analysis of excitatory spine synapses in CA1 stratum radiatum revealed a rapid increase of the postsynaptic density (PSD) thickness and length, as well as formation of concave synapses with perforated PSD during the first 24 h after ischemic episode, followed at the long term by degeneration of 80% of synaptic contacts. In presynaptic terminals, ischemia induced a depletion of synaptic vesicles and changes in their spatial arrangement: they became more distant from active zones and had larger intervesicle spacing compared to controls. These rapid structural synaptic changes could be implicated in the mechanisms of cell death or adaptive plasticity. Comparison of the in vivo and in vitro model systems used in the study demonstrated a general similarity of these early morphological changes, confirming the validity of the in vitro model for studying synaptic structural plasticity. © 2006 Wiley-Liss, Inc. [source] A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy,HUMAN MUTATION, Issue 6 2008Montserrat Rodríguez-Ballesteros Abstract Autosomal recessive nonsyndromic hearing impairment (NSHI) is a heterogeneous condition, for which 53 genetic loci have been reported, and 29 genes have been identified to date. One of these, OTOF, encodes otoferlin, a membrane-anchored calcium-binding protein that plays a role in the exocytosis of synaptic vesicles at the auditory inner hair cell ribbon synapse. We have investigated the prevalence and spectrum of deafness-causing mutations in the OTOF gene. Cohorts of 708 Spanish, 83 Colombian, and 30 Argentinean unrelated subjects with autosomal recessive NSHI were screened for the common p.Gln829X mutation. In compound heterozygotes, the second mutant allele was identified by DNA sequencing. In total, 23 Spanish, two Colombian and two Argentinean subjects were shown to carry two mutant alleles of OTOF. Of these, one Colombian and 13 Spanish subjects presented with auditory neuropathy. In addition, a cohort of 20 unrelated subjects with a diagnosis of auditory neuropathy, from several countries, was screened for mutations in OTOF by DNA sequencing. A total of 11 of these subjects were shown to carry two mutant alleles of OTOF. In total, 18 pathogenic and four neutral novel alleles of the OTOF gene were identified. Haplotype analysis for markers close to OTOF suggests a common founder for the novel c.2905_2923delinsCTCCGAGCGCA mutation, frequently found in Argentina. Our results confirm that mutation of the OTOF gene correlates with a phenotype of prelingual, profound NSHI, and indicate that OTOF mutations are a major cause of inherited auditory neuropathy. Hum Mutat 29(6), 823,831, 2008. © 2008 Wiley-Liss, Inc. [source] Identification of two cDNAs encoding synaptic vesicle protein 2 (SV2)-like proteins from epithelial tissues in the cat flea, Ctenocephalides felisINSECT MOLECULAR BIOLOGY, Issue 3 2004S. J. Walmsley Abstract Two distinct cDNAs that appear to encode proteins in the synaptic vesicle-2 (SV2) family were identified as expressed sequence tags from a Ctenocephalides felis hindgut and Malpighian tubule (HMT) cDNA library. To date, SV2 proteins have been described only in vertebrates, and have been detected only in synaptic vesicles in neuronal and endocrine tissues, where they are thought to regulate synaptic vesicle exocytosis. The cDNAs for the C. felis SV2-like proteins SVLP-1 and SVLP-2 encode predicted full-length proteins of 530 and 726 amino acids, respectively. Of characterized proteins, the SVLP protein sequences were most similar to rat SV2B. Northern blot analysis revealed that both mRNAs were up-regulated in larval stages that feed and in adults after feeding, and were expressed primarily or exclusively in the HMT tissues in adult fleas. These results suggest that the flea SVLP-1 and SVLP-2 gene products may have roles that are specific for the HMT tissues, and may differ in function from vertebrate SV2 proteins. [source] Immunocytochemical evidence for biogenic amines and immunogold labeling of serotonergic synapses in tentacles of Aiptasia pallida (Cnidaria, Anthozoa)INVERTEBRATE BIOLOGY, Issue 4 2000Jane A. Westfall Abstract. Evidence for classical neurotransmitters in sea anemones remains controversial. We used high performance liquid chromatography with electrochemical detection (HPLC-EC) and electron microscopical imunocytochemistry to determine the presence of serotonin and precursor synthetic enzymes of other biogenic amines in tentacles of the sea anemone Aiptasia pallida. Using HPLC-EC we found dopamine and serotonin (5-hydroxytryptamine, 5-HT) in both tentacles and whole animal homogenates. Antibodies to tyrosine hydroxylase, dopamine ,-hydroxylase, phenylethanolamine N-methyltransferase, and 5-HT were used with the peroxidase-antiperoxidase method to reveal positive immunoreactivity to these substances in neurons of tentacles. Immunogold labeling of serial thin sections with the anti-5,HT antibody revealed reactive products in synaptic vesicles at interneuronal, neuromuscular, and neurospirocyte synapses. These results suggest that both catecholamine and indolamine neurotransmitters occur in sea anemones in addition to the neuropeptide Antho-RFamide, indicating the presence of multiple types of transmitter substances in an early nervous system. [source] Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld geneJOURNAL OF ANATOMY, Issue 3 2003Thomas H. Gillingwater Abstract We carried out an ultrastructural analysis of axotomized synaptic terminals in Wlds and Ube4b/Nmnat (Wld) transgenic mice, in which severed distal axons are protected from Wallerian degeneration. Previous studies have suggested that axotomy in juvenile (< 2 months) Wld mice induced a progressive nerve terminal withdrawal from motor endplates. In this study we confirm that axotomy-induced terminal withdrawal occurs in the absence of all major ultrastructural characteristics of Wallerian degeneration. Pre- and post-synaptic membranes showed no signs of disruption or fragmentation, synaptic vesicle densities remained at pre-axotomy levels, the numbers of synaptic vesicles clustered towards presynaptic active zones did not diminish, and mitochondria retained their membranes and cristae. However, motor nerve terminal ultrastructure was measurably different following axotomy in Wld transgenic 4836 line mice, which strongly express Wld protein: axotomized presynaptic terminals were retained, but many were significantly depleted of synaptic vesicles. These findings suggest that the Wld gene interacts with the mechanisms regulating transmitter release and vesicle recycling. [source] The biological activity of ubiquitinated BoNT/B light chain in vitro and in human SHSY-5Y neuronal cells,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2009Xuerong Shi Abstract BoNT/B light chain is a zinc-dependent endopeptidase. After entering its target, the neuronal cell, BoNT/B is responsible for synaptobrevin-2 (VAMP-2) cleavage. This results in reduced neurotransmitter (acetylcholine) release from synaptic vesicles, yielding muscular paralysis. Since the toxin persists in neuronal cells for an extended period, regeneration of VAMP-2 is prevented. We evaluated therapeutic targets to overcome botulinum persistence because early removal would rescue the neuronal cell. The ubiquitination/proteasome cellular pathway is responsible for removing "old" or undesirable proteins. Therefore, we assessed ubiquitination of BoNT/B light chain in vitro, and characterized the effects of ubiquitination modulating drugs, PMA (phorbol 12-myristate 13-acetate) and expoxomicin, on ubiquitination of BoNT/B light chain in neuronal cells. Both drugs altered BoNT/B light chain ubiquitination. Ubiquitination in vitro and in cells decreased the biological activity of BoNT/B light chain. These results further elucidate BoNT protein degradation pathways in intoxicated neuronal cells and mechanisms to enhance toxin removal. J. Cell. Biochem. 108: 660,667, 2009. Published 2009 Wiley-Liss, Inc. [source] The molecular physiology of activity-dependent bulk endocytosis of synaptic vesiclesJOURNAL OF NEUROCHEMISTRY, Issue 4 2009Emma L. Clayton Abstract Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity. [source] Effectiveness of extracellular lactate/pyruvate for sustaining synaptic vesicle proton gradient generation and vesicular accumulation of GABAJOURNAL OF NEUROCHEMISTRY, Issue 3 2006A. S. Tarasenko Abstract The effects of extracellular monocarboxylates pyruvate and lactate on membrane potentials, acidification and neurotransmitter filling of synaptic vesicles were investigated in experiments with rat brain synaptosomes using [3H]GABA and fluorescent dyes, potential-sensitive rhodamine 6G and pH-sensitive acridine orange. In experiments investigating accumulation of acridine orange in synaptic vesicles within the synaptosomes, monocarboxylates, similarly to glucose, ensured generation of the vesicle proton gradient by available and recycled vesicles, and pyruvate demonstrated the highest efficacy. An increase in the level of proton gradient correlated with enhanced accumulation of [3H]GABA in synaptic vesicles and resulted in enlarged exocytosis and attenuated the transporter-mediated [3H]GABA release. Pyruvate added to glucose-contained medium caused more active binding of rhodamine 6G by synaptosomes that reflected mitochondrial membrane hyperpolarization, and this intensification of nerve terminal energy metabolism resulted in an increase in total ATP content by ,25%. Pyruvate also prolonged the state of metabolic competence of nerve terminal preparations, keeping the mitochondrial potential and synaptic vesicle proton gradient at steady levels over a long period of time. Thus, besides glucose, the extracellular monocarboxylates pyruvate and lactate can provide sufficient support of energy-dependent processes in isolated nerve terminals, allowing effective functioning of neurotransmitter release and reuptake systems. [source] |