Home About us Contact | |||
Synaptic Transmission (synaptic + transmission)
Kinds of Synaptic Transmission Selected AbstractsSynaptic Transmission: Inhibition of Neurotransmitter Release by Botulinum ToxinsHEADACHE, Issue 2003Oliver Dolly MSc Botulinum toxin type A, a protein long used in the successful treatment of various dystonias, has a complex mechanism of action that results in muscle relaxation. At the neuromuscular junction, the presynaptic nerve ending is packed with synaptic vesicles filled with acetylcholine, and clustered at the tip of the folds of the postsynaptic muscle membrane are the acetylcholine receptors. Synaptic vesicles fuse with the membrane in response to an elevation of intraneuronal calcium concentration and undergo release of their transmitter by exocytosis. Intracellular proteins that contribute to the fusion of the vesicles with the plasma membrane during exocytosis include synaptosomal protein with a molecular weight of 25 kDa (SNAP-25); vesicle-associated membrane protein (VAMP), also known as synaptobrevin; and syntaxin. Through their proteolytic action on these proteins, botulinum toxins prevent exocytosis, thereby inhibiting the release of acetylcholine. There are 7 serotypes of this toxin,A, B, C1, D, E, F, and G,and each cleaves a different intracellular protein or the same target at distinct bonds. The separate cleavage sites in SNAP-25 for botulinum toxin types A and E contribute to their dissimilar durations of muscle relaxation. This report describes the molecular basis for the inhibition by botulinum toxins of neuroexocytosis and subsequent functional recovery at the neuromuscular junction. [source] GABAergic Modulation of the Expression of Genes Involved in GABA Synaptic Transmission and Stress in the Hypothalamus and Telencephalon of the Female Goldfish (Carassius auratus)JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2005C. J. Martyniuk Abstract GABA is one of the most abundant neurotransmitters in the vertebrate central nervous system and is involved in neuroendocrine processes such as development, reproduction, feeding and stress. To examine the effect of GABA on gene expression in the brain, we used a cDNA macroarray containing 26 genes involved in GABA synaptic transmission (GABA receptor subunits, GABA transporters), reproduction (gonadotrophin-releasing hormone isoforms and oestrogen receptor ,), feeding (neuropeptide Y and cholecystokinin), and stress [corticotrophin-releasing factor (CRF)]. To elevate GABA levels in the brain, we injected female goldfish with gamma-vinyl GABA (300 µg/g of body weight) (24 h), an irreversible inhibitor of the enzyme GABA transaminase (GABA-T). We found that increased levels of GABA in the hypothalamus resulted in a 2.2-fold down-regulation of GABAA receptor ,4 subunit mRNA. In the telencephalon, we found that increased GABA levels resulted in a 1.5-fold increase of CRF mRNA and a 1.8-fold decrease of GABAA receptor ,2 subunit mRNA. Increasing GABA in the hypothalamus and telencephalon of the goldfish did not significantly affect the mRNA abundance of genes involved in GABA synthesis (glutamic acid decarboxylase isoforms) and degradation (GABA-T), feeding, or reproduction. Our preliminary study suggests that the regulation of GABA receptor subunit mRNA expression by GABA may be a conserved evolutionary mechanism in vertebrates to modulate GABAergic synaptic transmission. [source] Vasopressin Preferentially Depresses Excitatory Over Inhibitory Synaptic Transmission in the Rat Supraoptic Nucleus In VitroJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2000Kombian1 Endogenous arginine-vasopressin (AVP) in the supraoptic nucleus is known to decrease the firing rate of some supraoptic nucleus neurones. To determine a possible mechanism by which this locally released AVP produces this change in neuronal excitability, we investigated the effects of AVP on evoked excitatory (e.p.s.c.) and inhibitory post-synaptic (i.p.s.c.) responses recorded in magnocellular neurones in a hypothalamic slice preparation, using the perforated-patch recording technique. Our data show that AVP produces a dose-dependent decrease in the evoked e.p.s.c. in about 80% of magnocellular neurones tested with an estimated EC50 of about 0.9 ,M. The maximum decrease in e.p.s.c. amplitude was about 31% of control and was obtained with an AVP concentration of 2 ,M. The AVP-induced synaptic depression was blocked by Manning Compound (MC), a non-selective antagonist of oxytocin (OXT) and vasopressin (AVP) receptors, but not by a selective OXT receptor antagonist. It was not mimicked by desmopressin (ddAVP), a V2-receptor subtype agonist. By contrast, AVP used at the same concentration (2 ,M), had no global effect on pharmacologically isolated i.p.s.c.s in the majority of magnocellular neurones tested. These results show that AVP acts in the supraoptic nucleus to reduce excitatory synaptic transmission to magnocellular neurones by activating a non-OXT receptor, presumably the V1 receptor subtype. [source] Effect of Corticosteroid Treatment In Vitro on Adrenalectomy-Induced Impairment of Synaptic Transmission in the Rat Dentate GyrusJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000Stienstra Removal of the rat adrenals results after 3 days in the appearance of apoptotic cells in the dentate gyrus. Apoptosis is accompanied by an impaired synaptic transmission in the dentate gyrus. Substitution in vivo with a low dose of corticosterone was found to prevent both the appearance of apoptotic cells and the functional impairment. In the present study we determined whether the functional normalisation after corticosterone treatment critically depends on prevention of apoptosis. To address this question, brain slices from rats showing apoptosis after adrenalectomy were treated in vitro with the mineralocorticoid aldosterone (3 nM) or with 30 nM corticosterone, which is assumed to activate both mineralo- and glucocorticoid receptors. Steroids were briefly applied either during recording (acute effects) or several hours before recording (long-term effects). While the slope of the fEPSP recorded in the outer molecular layer of the dentate gyrus in response to perforant path stimulation was not affected up to 1 h after acute administration of the steroids, fEPSP slopes recorded 2.5,3 h after corticosterone or aldosterone treatment were significantly increased, to the level of the sham-operated controls. The results indicate that delayed corticosteroid effects through in vitro activation of mineralocorticoid receptors (MRs) are sufficient to normalise synaptic transmission in the dentate gyrus of ADX rats, even in the presence of apoptotic cells. We tentatively conclude that the impaired synaptic transmission seen after ADX is probably not primarily caused by the appearance of apoptotic cells. [source] Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivoDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008Kendall R. Van Keuren-Jensen Abstract Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity-induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP-labeled and Homer-expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Synapse loss in dementiasJOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2010Ryan Clare Abstract Synaptic transmission is essential for nervous system function, and its dysfunction is a known major contributing factor to Alzheimer's-type dementia. Antigen-specific immunochemical methods are able to characterize synapse loss in dementia through the quantification of various synaptic proteins involved in the synaptic cycle. These immunochemical methods applied to the study of Alzheimer's disease (AD) brain specimens have correlated synaptic loss with particularly toxic forms of amyloid-, protein and have also established synapse loss as the best correlate of dementia severity. A significant but comparatively circumscribed amount of literature describes synaptic decline in other forms of dementia. Ischemic vascular dementia (IVD) is quite heterogeneous, and synapse loss in IVD seems to be variable among IVD subtypes, probably reflecting its variable neuropathologic correlates. Loss of synaptic protein has been identified in vascular dementia of the Binswanger type and Spatz-Lindenberg's disease. Here we demonstrate a significant loss of synaptophysin density within the temporal lobe of frontotemporal dementia (FTD) patients. © 2010 Wiley-Liss, Inc. [source] Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neuronesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Gary C. Bird Mechanisms of pain-related plasticity in the amygdala, a key player in emotionality, were studied at the cellular and molecular levels in a model of arthritic pain. The influence of the arthritis pain state induced in vivo on synaptic transmission and N -methyl- d -aspartate (NMDA) receptor function was examined in vitro using whole-cell voltage-clamp recordings of neurones in the latero-capsular part of the central nucleus of the amygdala (CeA), which is now defined as the ,nociceptive amygdala'. Synaptic transmission was evoked by electrical stimulation of afferents from the pontine parabrachial area (part of the spino-parabrachio-amygdaloid pain pathway) in brain slices from control rats and from arthritic rats. This study shows that pain-related synaptic plasticity is accompanied by protein kinase A (PKA)-mediated enhanced NMDA-receptor function and increased phosphorylation of NMDA-receptor 1 (NR1) subunits. Synaptic plasticity in the arthritis pain model, but not normal synaptic transmission in control neurones, was inhibited by a selective NMDA receptor antagonist. Accordingly, an NMDA receptor-mediated synaptic component was recorded in neurones from arthritic animals, but not in control neurones, and was blocked by inhibition of PKA but not protein kinase C (PKC). Exogenous NMDA evoked a larger inward current in neurones from arthritic animals than in control neurones, indicating a postsynaptic effect. Paired-pulse facilitation, a measure of presynaptic mechanisms, was not affected by an NMDA-receptor antagonist. Increased levels of phosphorylated NR1 protein, but not of total NR1, were measured in the CeA of arthritic rats compared to controls. Our results suggest that pain-related synaptic plasticity in the amygdala involves a critical switch of postsynaptic NMDA receptor function through PKA-dependent NR1 phosphorylation. [source] Modulation and metamodulation of synapses by adenosineACTA PHYSIOLOGICA, Issue 2 2010J. A. Ribeiro Abstract The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of ,regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses. [source] Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinasesACTA PHYSIOLOGICA, Issue 3 2010O. Selbach Abstract Aim:, Orexins/hypocretins (OX/Hcrt) are hypothalamic neuropeptides linking sleep,wakefulness, appetite and neuroendocrine control. Their role and mechanisms of action on higher brain functions, such as learning and memory, are not clear. Methods:, We used field recordings of excitatory post-synaptic potentials (fEPSP) in acute mouse brain slice preparations to study the effects of orexins and pharmacological inhibitors of multiple kinases on long-term synaptic plasticity in the hippocampus. Results:, Orexin-A (OX-A) but not orexin-B (OX-B) induces a state-dependent long-term potentiation of synaptic transmission (LTPOX) at Schaffer collateral-CA1 synapses in hippocampal slices from adult (8- to 12-week-old) mice. In contrast, OX-A applied to slices from juvenile (3- to 4-week-old) animals causes a long-term depression (LTDOX) in the same pathway. LTPOX is blocked by pharmacological inhibition of orexin receptor-1 (OX1R) and plasticity-related kinases, including serine/threonine- (CaMKII, PKC, PKA, MAPK), lipid- (PI3K), and receptor tyrosine kinases (Trk). Inhibition of OX1R, CaMKII, PKC, PKA and Trk unmasks LTDOX in adult animals. Conclusion:, Orexins control not only the bistability of arousal states and threshold for appetitive behaviours but, in an age- and kinase-dependent manner, also bidirectional long-term synaptic plasticity in the hippocampus, providing a possible link between behavioural state and memory functions. [source] The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cordACTA PHYSIOLOGICA, Issue 2 2009H. Nishimaru Abstract Neuronal circuits generating the basic coordinated limb movements during walking of terrestrial mammals are localized in the spinal cord. In these neuronal circuits, called central pattern generators (CPGs), inhibitory synaptic transmission plays a crucial part. Inhibitory synaptic transmission mediated by glycine and GABA is thought to be essential in coordinated activation of muscles during locomotion, in particular, controlling temporal and spatial activation patterns of muscles of each joint of each limb on the left and right side of the body. Inhibition is involved in other aspects of locomotion such as control of speed and stability of the rhythm. However, the precise roles of neurotransmitters and their receptors mediating inhibitory synaptic transmission in mammalian spinal CPGs remain unclear. Moreover, many of the inhibitory interneurones essential for output pattern of the CPG are yet to be identified. In this review, recent advances on these issues, mainly from studies in the developing rodent spinal cord utilizing electrophysiology, molecular and genetic approaches are discussed. [source] Functions of glutamate transporters in cerebellar Purkinje cell synapsesACTA PHYSIOLOGICA, Issue 1 2009Y. Takayasu Abstract Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post-synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one-to-one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT-1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT-1 affects cerebellar morphology, the deletion of both GLAST and GLT-1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1-mediated events including slow EPSCs and long-term depression. No change in synaptic function is detected in mice that are deficient in EAAC1. [source] The effects of seizures on the connectivity and circuitry of the developing brainDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2004John W. Swann Abstract Recurring seizures in infants and children are often associated with cognitive deficits, but the reason for the learning difficulties is unclear. Recent studies in several animal models suggest that seizures themselves may contribute in important ways to these deficits. Other studies in animals have shown that recurring seizures result in dendritic spine loss. This change, coupled with a down-regulation in NMDA receptor subunit expression, suggests that repetitive seizures may interrupt the normal development of glutamatergic synaptic transmission. We hypothesize that homeostatic, neuroprotective processes are induced by recurring early-life seizures. These processes, by diminishing glutamatergic synaptic transmission, are aimed at preventing the continuation of seizures. However, by preventing the normal development of glutamatergic synapses, and particularly NMDA receptor-mediated synaptic transmission, such homeostatic processes also reduce synaptic plasticity and diminish the ability of neuronal circuits to learn and store memories. MRDD Research Reviews 2004;10:96,100. © 2004 Wiley-Liss, Inc. [source] Drosophila cdk5 is needed for locomotive behavior and NMJ elaboration, but seems dispensable for synaptic transmissionDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2009Alexander E. Kissler Abstract Cyclin-dependent kinase 5 (Cdk5) functions in postmitotic neuronal cells and play roles in cell differentiation, cell migration, axonal guidance, and synaptic function. Here, we demonstrate that Drosophila cdk5 is dispensable for adult viability and fertility, a feature that allows us to study its physiological function in the whole animal model. For the adult, cdk5 is needed for proper locomotion and flight performance. Larvae lacking cdk5 in the presynaptic tissue display abnormal crawling motion, and their neuromuscular junctions (NMJ) are elongated and contain a higher number of boutons that are smaller. As a result of these two counteracting effects, the total synaptic area/NMJ is similar to wild type, leading to normal synaptic transmission, indicating that a compensatory mechanism is capable of correcting the problem caused by the lack of cdk5. futsch, the Drosophila MAP1B homolog, is also involved in NMJ morphogenesis, and analysis of the NMJ phenotype of the double mutant futschK68; cdk5, indicates that cdk5 is epistatic to futsch in this process. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivoDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008Kendall R. Van Keuren-Jensen Abstract Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity-induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP-labeled and Homer-expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] A screen for neurotransmitter transporters expressed in the visual system of Drosophila melanogaster identifies three novel genesDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007Rafael Romero-Calderón Abstract The fly eye provides an attractive substrate for genetic studies, and critical transport activities for synaptic transmission and pigment biogenesis in the insect visual system remain unknown. We therefore screened for transporters in Drosophila melanogaster that are down-regulated by genetically ablating the eye. Using a large panel of transporter specific probes on Northern blots, we identified three transcripts that are down-regulated in flies lacking eye tissue. Two of these, CG13794 and CG13795, are part of a previously unknown subfamily of putative solute carriers within the neurotransmitter transporter family. The third, CG4476, is a member of a related subfamily that includes characterized nutrient transporters expressed in the insect gut. Using imprecise excision of a nearby transposable P element, we have generated a series of deletions in the CG4476 gene. In fast phototaxis assays, CG4476 mutants show a decreased behavioral response to light, and the most severe mutant behaves as if it were blind. These data suggest an unforeseen role for the "nutrient amino acid transporter" subfamily in the nervous system, and suggest new models to study transport function using the fly eye. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Genetic and pharmacological studies of GluR5 modulation of inhibitory synaptic transmission in the anterior cingulate cortex of adult miceDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2007Long-Jun Wu Abstract In the anterior cingulate cortex (ACC), GluR5-containing kainate receptor mediated the small portion of excitatory postsynaptic current. However, little is known about its role in modulation of neurotransmitter release in this brain region. In the present study, we address this question by using selective GluR5 agonist and antagonist, as well as GluR5,/, mice. Our results showed that activation of GluR5 induced action potential-dependent GABA release, which is also required for the activation of voltage-dependent calcium channel and Ca2+ influx. The effect of GluR5 activation is selective to the GABAergic, but not glutamatergic synaptic transmission. Endogenous activation of GluR5 also enhanced GABA release to ACC pyramidal neurons and the corresponding postsynaptic tonic GABA current. Our results suggest the somatodendritic, but not presynaptic GluR5, in modulation of GABA release. The endogenous GluR5 activation and the subsequent tonic GABA current may play an inhibitory role in ACC-related brain functions. © 2006 Wiley Periodicals, Inc. Develop Neurobiol 67: 146,157, 2007. [source] Parasitoid wasp sting: A cocktail of GABA, taurine, and ,-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach hostDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2006Eugene L. Moore Abstract The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists ,-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behaviorDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2006Takaomi Sakai Abstract Drosophila male courtship is a complex and robust behavior, the potential for which is genetically built into specific neural circuits in the central nervous system. Previous studies using male-female mosaics and the flies with defects in particular brain structures implicated the critical central regions involved in male courtship behavior. However, their acute physiological roles in courtship regulation still largely remain unknown. Using the temperature-sensitive Dynamin mutation, shibirets1, here we demonstrate the significance of two major brain structures, the mushroom bodies and the central complex, in experience-independent aspects of male courtship. We show that blocking of synaptic transmission in the mushroom body intrinsic neurons significantly delays courtship initiation and reduces the courtship activity by shortening the courtship bout length when virgin females are used as a sexual target. Interestingly, however, the same treatment affects neither initiation nor maintenance of courtship toward young males that release courtship-stimulating pheromones different from those of virgin females. In contrast, blocking of synaptic transmission in a central complex substructure, the fan-shaped body, slightly but significantly reduces courtship activity toward both virgin females and young males with little effect on courtship initiation. Taken together, our results indicate that the neuronal activity in the mushroom bodies plays an important role in responding to female-specific sex pheromones that stimulate initiation and maintenance of male courtship behavior, whereas the fan-shaped body neurons are involved in maintenance of male courtship regardless of the nature of courtship-stimulating cues. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Activation of receptors negatively coupled to adenylate cyclase is required for induction of long-term synaptic depression at Schaffer collateral-CA1 synapsesDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2006Linda A. Santschi Abstract Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2,R,3,R)-2-(2,,3,-dicarboxy-cyclopropyl) glycine (DCGIV; 5 ,M), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 ,M), resulted in a long-lasting depression of synaptic strength. When zaprinast (20 ,M) was combined with a cell-permeant PKA inhibitor H-89 (10 ,M), the need for mGluR IIs was bypassed. DCGIV, when combined with a "submaximal" low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)-alpha-ethylglutamic acid (EGLU; 5 ,M), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)-a-Cyclopropyl-[3- 3H]-4-phosphonophenylglycine (CPPG; 10 ,M), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6 -cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 ,M), was sufficient to elicit CLTD. Inhibition of PKA with H-89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] GABAergic modulation of primary gustatory afferent synaptic efficacyDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002Andrew A. Sharp Abstract Modulation of synaptic transmission at the primary sensory afferent synapse is well documented for the somatosensory and olfactory systems. The present study was undertaken to test whether GABA impacts on transmission of gustatory information at the primary afferent synapse. In goldfish, the vagal gustatory input terminates in a laminated structure, the vagal lobes, whose sensory layers are homologous to the mammalian nucleus of the solitary tract. We relied on immunoreactivity for the GABA-transporter, GAT-1, to determine the distribution of GABAergic synapses in the vagal lobe. Immunocytochemistry showed dense, punctate GAT-1 immunoreactivity coincident with the layers of termination of primary afferent fibers. The laminar nature and polarized dendritic structure of the vagal lobe make it amenable to an in vitro slice preparation to study early synaptic events in the transmission of gustatory input. Electrical stimulation of the gustatory nerves in vitro produces synaptic field potentials (fEPSPs) predominantly mediated by ionotropic glutamate receptors. Bath application of either the GABAA receptor agonist muscimol or the GABAB receptor agonist baclofen caused a nearly complete suppression of the primary fEPSP. Coapplication of the appropriate GABAA or GABAB receptor antagonist bicuculline or CGP-55845 significantly reversed the effects of the agonists. These data indicate that GABAergic terminals situated in proximity to primary gustatory afferent terminals can modulate primary afferent input via both GABAA and GABAB receptors. The mechanism of action of GABAB receptors suggests a presynaptic locus of action for that receptor. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 133,143, 2002 [source] Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by foodDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001Ping Shen Abstract The conserved neuropeptide Y (NPY) signaling pathway has been strongly implicated in the stimulation of food uptake in vertebrates as well as in the regulation of food conditioned foraging behaviors of Caenorhabditis elegans. Using in situ RNA hybridization and immunocytochemistry, we report the neuronal network of Drosophila neuropeptide F (dNPF), a human NPY homologue, in the larval central nervous system and its food-dependent modifications. We provide indications that gustatory stimulation by sugar, but not its ingestion or metabolism, is sufficient to trigger long-term, dose-dependent alterations of the dNPF neuronal circuit through both dnpf activation and increased synaptic transmission. Our results strongly suggest that the dNPF neuronal circuit is an integral part of the sensory system that mediates food signaling, providing the neural basis for understanding how invertebrate NPY regulates food response. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 16,25, 2001 [source] Neurone-to-astrocyte communication by endogenous ATP in mixed culture of rat hippocampal neurones and astrocytesDRUG DEVELOPMENT RESEARCH, Issue 1 2003Schuichi Koizumi ATP is recognized as an important intercellular signaling molecule in the peripheral and CNS. Glutamate is reported to be an important neurone-to-glia mediator being released from neurones and astrocytes that activates astrocytic and neuronal Ca2+ responses, respectively. We demonstrate here that endogenous ATP could be an extracellular molecule for neurone-to-astrocyte communication in cocultured rat hippocampal neurones and astrocytes. Hippocampal neurones reveal synchronized Ca2+ oscillation, which was due to glutamatergic synaptic transmission. When analyzed in a fura-2 method, a slight and very slow increase in intracellular Ca2+ concentration ([Ca2+]i) elevation was observed in some population of astrocytes. Such astrocytic [Ca2+]i elevation was dramatically inhibited by apyrase, though apyrase itself had no effect on neuronal Ca2+ oscillation. For a detail analysis, we investigated changes in [Ca2+]i in cells using a confocal microscopy. When cocultured hippocampal neurones and astrocytes were depolarized electronically in the presence of glutamate-receptor antagonists, a transient elevation in [Ca2+]i was observed in neurones, which was followed by a slowly initiated and small rise in [Ca2+]i in astrocytes. Apyrase or P2 receptor antagonists almost abolished the [Ca2+]i rises in astrocytes, suggesting that depolarization-evoked ATP release from neurones should produce astrocytic [Ca2+]i elevation via P2 receptors. Using a luciferin,luciferase bioluminescence assay, we found that neurones could release ATP in an activity-dependent manner. These findings suggest that endogenous ATP should be an important intercellular mediator between neurones and astrocytes and that functions of these cells should be fine-tuned by endogenously released ATP in situ. Drug Dev. Res. 59:88,94, 2003. © 2003 Wiley-Liss, Inc. [source] Adenosine A3 receptors in the rat hippocampus: Lack of interaction with A1 receptorsDRUG DEVELOPMENT RESEARCH, Issue 4 2003Luísa V. Lopes Abstract Adenosine acts as a neuromodulator in the hippocampus essentially through activation of inhibitory A1 receptors. Using single-cell PCR analysis, we found that CA1 pyramidal cells coexpress A1 receptor mRNA together with that of another adenosine receptor, the A3 receptor. As occurs for the A1 receptor, Western blot analysis indicated that the A3 receptor is also located in hippocampal nerve terminals. However, activation of A3 receptors with its purportedly selective agonist Cl-IBMECA (0.1,10 µM) failed to affect hippocampal synaptic transmission or to modify the evoked release of glutamate or GABA. Also, blockade of A3 receptors with MRS 1191 (5 µM) failed to affect either hypoxia- or ischemia-induced depression of hippocampal synaptic transmission. Activation of A3 receptors also failed to control A1 receptor function, as Cl-IBMECA (100 nM) did not modify the ability of CPA to displace [3H]DPCPX binding to hippocampal membranes or the A1 receptor-mediated inhibition of hippocampal synaptic transmission. However, ligand binding studies revealed that Cl-IBMECA displaced the binding of an A1 receptor agonist ([3H]R-PIA, Ki=47 nM) or antagonist ([3H]DPCPX, Ki=130 nM), which suggests that A3 receptor ligands also act on native A1 receptors. We believe that A3 receptors are expressed in hippocampal neurons and are located in hippocampal nerve terminals, though their function remains elusive. Drug Dev. Res. 58:428,438, 2003. © 2003 Wiley-Liss, Inc. [source] Epileptiform synchronization in the cingulate cortexEPILEPSIA, Issue 3 2009Gabriella Panuccio Summary Purpose:, The anterior cingulate cortex (ACC),which plays a role in pain, emotions and behavior,can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. Methods:, We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. Results:, Bath-application of the convulsant 4-aminopyridine (4AP, 50 ,M) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N -methyl- d -aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. Conclusions:, Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC. [source] Effects of Potassium Concentration on Firing Patterns of Low-Calcium Epileptiform Activity in Anesthetized Rat Hippocampus: Inducing of Persistent Spike ActivityEPILEPSIA, Issue 4 2006Zhouyan Feng Summary:,Purpose: It has been shown that a low-calcium high-potassium solution can generate ictal-like epileptiform activity in vitro and in vivo. Moreover, during status epileptiform activity, the concentration of [K+]o increases, and the concentration of [Ca2+]o decreases in brain tissue. Therefore we tested the hypothesis that long-lasting persistent spike activity, similar to one of the patterns of status epilepticus, could be generated by a high-potassium, low-calcium solution in the hippocampus in vivo. Methods: Artificial cerebrospinal fluid was perfused over the surface of the exposed left dorsal hippocampus of anesthetized rats. A stimulating electrode and a recording probe were placed in the CA1 region. Results: By elevating K+ concentration from 6 to 12 mM in the perfusate solution, the typical firing pattern of low-calcium ictal bursts was transformed into persistent spike activity in the CA1 region with synaptic transmission being suppressed by calcium chelator EGTA. The activity was characterized by double spikes repeated at a frequency ,4 Hz that could last for >1 h. The analysis of multiple unit activity showed that both elevating [K+]o and lowering [Ca2+]o decreased the inhibition period after the response of paired-pulse stimulation, indicating a suppression of the after-hyperpolarization (AHP) activity. Conclusions: These results suggest that persistent status epilepticus,like spike activity can be induced by nonsynaptic mechanisms when synaptic transmission is blocked. The unique double-spike pattern of this activity is presumably caused by higher K+ concentration augmenting the frequency of typical low-calcium nonsynaptic burst activity. [source] Cooling Abolishes Neuronal Network Synchronization in Rat Hippocampal SlicesEPILEPSIA, Issue 6 2002Sam P. Javedan Summary: ,Purpose: We sought to determine whether cooling brain tissue from 34 to 21°C could abolish tetany-induced neuronal network synchronization (gamma oscillations) without blocking normal synaptic transmission. Methods: Intracellular and extracellular electrodes recorded activity in transverse hippocampal slices (450,500 ,m) from Sprague,Dawley male rats, maintained in an air,fluid interface chamber. Gamma oscillations were evoked by afferent stimulation at 100 Hz for 200 ms. Baseline temperature in the recording chamber was 34°C, reduced to 21°C within 20 min. Results: Suprathreshold tetanic stimuli evoked membrane potential oscillations in the 40-Hz frequency range (n = 21). Gamma oscillations induced by tetanic stimulation were blocked by bicuculline, a ,-aminobutyric acid (GABA)A -receptor antagonist. Cooling from 34 to 21°C reversibly abolished gamma oscillations in all slices tested. Short, low-frequency discharges persisted after cooling in six of 14 slices. Single-pulse,evoked potentials, however, were preserved after cooling in all cases. Latency between stimulus and onset of gamma oscillation was increased with cooling. Frequency of oscillation was correlated with chamber cooling temperature (r = 0.77). Tetanic stimulation at high intensity elicited not only gamma oscillation, but also epileptiform bursts. Cooling dramatically attenuated gamma oscillation and abolished epileptiform bursts in a reversible manner. Conclusions: Tetany-induced neuronal network synchronization by GABAA -sensitive gamma oscillations is abolished reversibly by cooling to temperatures that do not block excitatory synaptic transmission. Cooling also suppresses transition from gamma oscillation to ictal bursting at higher stimulus intensities. These findings suggest that cooling may disrupt network synchrony necessary for epileptiform activity. [source] Cyclosporine Induces Epileptiform Activity in an In Vitro Seizure ModelEPILEPSIA, Issue 3 2000Michael Wong Summary: Purpose: Cyclosporine (CSA) toxicity represents a common cause of seizures in transplant patients, but the specific mechanisms by which CSA induces seizures are unknown. Although CSA may promote seizure activity by various metabolic, toxic, vascular, or structural mechanisms, CSA also has been hypothesized to modulate neuronal excitability directly. The objective of this study was to determine if CSA exerts direct epileptogenic actions on neurons in an in vitro seizure model. Methods: Combined hippocampal-entorhinal cortex slices from juvenile rats were exposed directly to artificial cerebro-spinal fluid (ACSF) containing either (a) 1.0 mM magnesium sulfate (control), (b) 1.0 mM sodium sulfate (low-magnesium), or (c) 1.0 mM magnesium sulfate + CSA (1,000,10,000 ng/ml). Spontaneous and evoked extracellular field potentials were recorded simultaneously from the dentate gyrus (DG) and CA3 hippocampal regions. Evoked synaptic responses were elicited by stimulation of the entorhinal cortex/perforant pathway. Results: CSA elicited spontaneous or stimulation-induced epileptiform activity in the DG or CA3 region of ,40% of slices, consisting of brief repetitive "interictal" discharges or prolonged stereotypical "ictal" discharges. Mean latency to epileptiform activity was ,100 min after onset of CSA application. The interictal discharges were inhibited by the non-NMDA antagonist, NBQX. Similar epileptiform activity was observed in low-magnesium ACSF without CSA. In control ACSF alone, epileptiform activity was not seen, except for rare spontaneous potentials in the DG. Conclusions: Direct effects of CSA on neuronal excitability and synaptic transmission may contribute to seizures seen in clinical CSA neurotoxicity. [source] Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2010Jeffrey C. Petruska Abstract We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed, indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long-lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury. [source] Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington's diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009David Mazzocchi-Jones Abstract Embryonic striatal grafts integrate with the host striatal circuitry, forming anatomically appropriate connections capable of influencing host behaviour. In addition, striatal grafts can influence host behaviour via a variety of non-specific, trophic and pharmacological mechanisms; however, direct evidence that recovery is dependent on circuit reconstruction is lacking. Recent studies suggest that striatal grafts alleviate simple motor deficits, and also that learning of complex motor skills and habits can also be restored. However, although the data suggest that such ,re-learning' requires integration of the graft into the host striatal circuitry, little evidence exists to demonstrate that such integration includes functional synaptic connections. Here we demonstrate that embryonic striatal grafts form functional connections with the host striatal circuitry, capable of restoring stable synaptic transmission, within an excitotoxic lesion model of Huntington's disease. Furthermore, such ,functional integration' of the striatal graft enables the expression of host,graft bi-directional synaptic plasticity, similar to the normal cortico-striatal circuit. These results indicate that striatal grafts express synaptic correlates of learning, and thereby provide direct evidence of functional neuronal circuit repair, an essential component of ,functional integration'. [source] The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2009Woon Ryoung Kim Abstract A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here, we examined the electrophysiological and behavioral characteristics of Bax -knockout (Bax -KO) mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax -KO mice resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month-old Bax -KO mice. These results suggest that the elimination of excess DG neurons via Bax -dependent PCD in the adult brain is required for the normal organization and function of the hippocampus. [source] |