Synaptic Structures (synaptic + structure)

Distribution by Scientific Domains


Selected Abstracts


Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insects

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002
Alan Hugh David Watson
Abstract The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context. Microsc. Res. Tech. 56:210,226, 2002. © 2002 Wiley-Liss, Inc. [source]


The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005
Henrike Neuhoff
Abstract Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products , profilin I and profilin II. A role for profilin II in activity-dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD-95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre- and postsynaptic sites and suggest a role for this actin-binding protein in activity-dependent remodelling of synaptic structure. [source]


Synaptic glutamate receptor clustering in mice lacking the SH3 and GK domains of SAP97

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2002
Nikolaj Klöcker
Abstract Postsynaptic targeting of the Drosophila tumour suppressor discs-large (Dlg) critically depends on its SH3 and GK domains. Here, we asked whether these domains are also involved in subcellular targeting of the mammalian Dlg homolog SAP97 and its interacting partners in CNS cortical neurons by analysing a recently described mouse mutant lacking the SH3 and GK domains of SAP97. Both wildtype and truncated SAP97 were predominantly expressed in perinuclear regions, in a pattern suggesting association with the endoplasmic reticulum. Weaker immunoreactivity was found in neurites colocalizing with both dendritic and axonal markers. As SAP97 has been implicated in the early intracellular processing of the glutamate receptor GluR1, we studied biochemical maturation and subcellular localization of GluR1 in the mutants. Both the glycosylation pattern and synaptic clustering of GluR1 were indistinguishable from wildtype mice. Synaptic clustering of the guanylate kinase domain interacting protein GKAP was also intact. Our data demonstrate that truncation of the SH3 and GK domains of SAP97 in mice does neither change its subcellular distribution nor does it disrupt synaptic structure or protein clustering, as opposed to severe missorting of the respective mutant Dlg protein in Drosophila. [source]


Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw

JOURNAL OF NEUROCHEMISTRY, Issue 3 2010
Joanne M. Ajmo
J. Neurochem. (2010) 113, 784,795. Abstract Aggregation of amyloid-, (A,) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that A,, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of A,-depositing transgenic mice (APPsw , APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing A, deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that A, or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in A,-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity. [source]


Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003
Oliver Biehlmaier
Abstract Previous studies have analyzed photoreceptor development, some inner retina cell types, and specific neurotransmitters in the zebrafish retina. However, only minor attention has been paid to the morphology of the synaptic connection between photoreceptors and second order neurons even though it represents the transition from the light sensitive receptor to the neuronal network of the visual system. Here, we describe the appearance and differentiation of pre- and postsynaptic elements at cone synapses in the developing zebrafish retina together with the maturation of the directly connecting second order neurons and a dopaminergic third order feedback-neuron from the inner retina. Zebrafish larvae were examined at developmental stages from 2 to 7dpf (days postfertilization) and in the adult. Synaptic maturation at the photoreceptor terminals was examined with antibodies against synapse associated proteins. The appearance of synaptic plasticity at the so-called spinule-type synapses between cones and horizontal cells was assessed by electron microscopy, and the maturation of photoreceptor downstream connection was identified by immunocytochemistry for GluR4 (AMPA-type glutamate receptor subunit), protein kinase ,1 (mixed rod-cone bipolar cells), and tyrosine hydroxylase (dopaminergic interplexiform cells). We found that developing zebrafish retinas possess first synaptic structures at the cone terminal as early as 3.5dpf. Morphological maturation of these synapses at 3.5,4dpf, together with the presence of synapse associated proteins at 2.5dpf and the maturation of second order neurons by 5dpf, indicate functional synaptic connectivity and plasticity between the cones and their second order neurons already at 5dpf. However, the mere number of spinules and ribbons at 7dpf still remains below the adult values, indicating that synaptic functionality of the zebrafish retina is not entirely completed at this stage of development. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 222,236, 2003 [source]


Presynaptic localization of an AMPA-type glutamate receptor in corticostriatal and thalamostriatal axon terminals

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004
Fumino Fujiyama
Abstract The neostriatum is known to receive glutamatergic projections from the cerebral cortex and thalamic nuclei. Vesicular glutamate transporters 1 and 2 (VGluT1 and VGluT2) are located on axon terminals of corticostriatal and thalamostriatal afferents, respectively, whereas VGluT3 is found in axon terminals of cholinergic interneurons in the neostriatum. In the present study, the postsynaptic localization of ionotropic glutamate receptors was examined in rat neostriatum by the postembedding immunogold method for double labelling of VGluT and glutamate receptors. Immunoreactive gold particles for AMPA receptor subunits GluR1 and GluR2/3 were frequently found not only on postsynaptic but also on presynaptic profiles immunopositive for VGluT1 and VGluT2 in the neostriatum, and GluR4-immunoreactive particles were observed on postsynaptic and presynaptic profiles positive for VGluT1. Quantitative analysis revealed that 27,45% of GluR1-, GluR2-, GluR2/3- and GluR4-immunopositive particles found in VGluT1- or VGluT2-positive synaptic structures in the neostriatum were associated with the presynaptic profiles of VGluT-positive axons. In contrast, VGluT-positive presynaptic profiles in the neostriatum showed almost no immunoreactivity for NMDA receptor subunits NR1 or NR2A/B. Furthermore, almost no GluR2/3-immunopositive particles were observed in presynaptic profiles of VGluT3-positive (cholinergic) terminals that made asymmetric synapses in the neostriatum, or in those of VGluT1- or VGluT2-positive terminals in the neocortex. The present results indicate that AMPA receptor subunits but not NMDA receptor subunits are located on axon terminals of corticostriatal and thalamostriatal afferents, and suggest that glutamate released from these axon terminals controls the activity of the terminals through the presynaptic AMPA autoreceptors. [source]


Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
Carmen Sandi
Abstract The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2,3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity. [source]


Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 7 2010
Yoshitaka Hamanaka
Abstract The location of proteins that contribute to synaptic function has been widely studied in vertebrate synapses, far more than at model synapses of the genetically manipulable fruit fly, Drosophila melanogaster. Drosophila photoreceptor terminals have been extensively exploited to characterize the actions of synaptic genes, and their distinct and repetitive synaptic ultrastructure is anatomically well suited for such studies. Synaptic release sites include a bipartite T-bar ribbon, comprising a platform surmounting a pedestal. So far, little is known about the composition and precise location of proteins at either the T-bar ribbon or its associated synaptic organelles, knowledge of which is required to understand many details of synaptic function. We studied the localization of candidate proteins to pre- or postsynaptic organelles, by using immuno-electron microscopy with the pre-embedding method, after first validating immunolabeling by confocal microscopy. We used monoclonal antibodies against Bruchpilot, epidermal growth factor receptor pathway substrate clone 15 (EPS-15), and cysteine string protein (CSP), all raised against a fly head homogenate, as well as sea urchin kinesin (antibody SUK4) and Discs large (DLG). All these antibodies labeled distinct synaptic structures in photoreceptor terminals in the first optic neuropil, the lamina, as did rabbit anti-DPAK (Drosophila p21 activated kinase) and anti-Dynamin. Validating reports from light microscopy, immunoreactivity to Bruchpilot localized to the edge of the platform, and immunoreactivity to SUK4 localized to the pedestal of the T-bar ribbon. Anti-DLG recognized the photoreceptor head of capitate projections, invaginating organelles from surrounding glia. For synaptic vesicles, immunoreactivity to EPS-15 localized to sites of endocytosis, and anti-CSP labeled vesicles lying close to the T-bar ribbon. These results provide markers for synaptic sites, and a basis for further functional studies. J. Comp. Neurol. 518:1133,1155, 2010. © 2009 Wiley-Liss, Inc. [source]


D2 receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2010
Max F. Oginsky
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D2 receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D2,Pan) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG wholemount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D2,Pan receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D2,Pan receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites. J. Comp. Neurol. 518:255,276, 2010. © 2009 Wiley-Liss, Inc. [source]