Home About us Contact | |||
Synaptic Localization (synaptic + localization)
Selected AbstractsSynaptic localization of GABAA receptor subunits in the substantia nigra of the rat: effects of quinolinic acid lesions of the striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002Fumino Fujiyama Abstract The inhibitory amino acid, ,-aminobutyric acid (GABA), plays a critical role in the substantia nigra (SN) in health and disease. GABA transmission is controlled in part by the type(s) of GABA receptor expressed, their subunit composition and their location in relation to GABA release sites. In order to define the subcellular localization of GABAA receptors in the SN in normal and pathological conditions, sections of SN from control rats and rats that had received quinolinic acid lesions of the striatum were immunolabelled using the postembedding immunogold technique with antibodies against subunits of the GABAA receptor. Immunolabelling for ,1, ,2/3 and ,2 subunits was primarily located at symmetrical synapses. Double-labelling revealed that ,2/3 subunit-positive synapses were formed by terminals that were enriched in GABA. Colocalization of ,1, ,2/3 and ,2 subunits occurred at individual symmetrical synapses, some of which were identified as degenerating terminals derived from the striatum. In the SN ipsilateral to the striatal lesion there was a significant elevation of immunolabelling for ,2/3 subunits of the GABAA receptor at symmetrical synapses, but not of GluR2/3 subunits of the AMPA receptor at asymmetrical synapses. It was concluded that fast GABAA -mediated transmission occurs primarily at symmetrical synapses within the SN, that different receptor subunits coexist at individual synapses and that the upregulation of GABAA receptors following striatal lesions is expressed as increased receptor density at synapses. The upregulation of GABAA receptors in Huntington's disease and its models is thus likely to lead to an increased efficiency of transmission at intact GABAergic synapses in the SN and may partly underlie the motor abnormalities of this disorder. [source] Synaptic localization of neuroligin 2 in the rodent retina: Comparative study with the dystroglycan-containing complexJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2010Leona Lui Abstract Several recent studies have shown that neuroligin 2 (NL2), a component of the cell adhesion neurexins,neuroligins complex, is localized postsynaptically at hippocampal and other inhibitory synapses throughout the brain. Other studies have shown that components of the dystroglycan complex are also localized at a subset of inhibitory synapses and are coexpressed with NL2 in brain. These data prompted us to undertake a comparative study between the localization of NL2 and the dystroglycan complex in the rodent retina. First, we determined that NL2 mRNA is expressed both in the inner and in the outer nuclear layers. Second, we found that NL2 is localized both in the inner and in the outer synaptic plexiform layers. In the latter, the horseshoe-shaped pattern of NL2 and its extensive colocalization with RIM2, a component of the presynaptic active zone at ribbon synapses, argue that NL2 is localized presynaptically at photoreceptor terminals. Third, comparison of NL2 and the dystroglycan complex distribution patterns reveals that, despite their coexpression in the outer plexiform layer, they are spatially segregated within distinct domains of the photoreceptor terminals, where NL2 is selectively associated with the active zone and the dystroglycan complex is distally distributed in the lateral regions. Finally, we report that the dystroglycan deficiency in the mdx3cv mouse does not alter NL2 localization in the outer plexiform layer. These data show that the NL2- and dystroglycan-containing complexes are differentially localized in the presynaptic photoreceptor terminals and suggest that they may serve distinct functions in retina. © 2009 Wiley-Liss, Inc. [source] Synaptic localization of P2X7 receptors in the rat retinaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004Theresa Puthussery Abstract The distribution of P2X7 receptor (P2X7R) subunits was studied in the rat retina using a subunit-specific antiserum. Punctate immunofluorescence was observed in the inner and outer plexiform layers. Double labeling of P2X7 and the horizontal cell marker, calbindin, revealed extensive colocalization in the outer plexiform layer (OPL). Significant colocalization of P2X7R and kinesin, a marker of photoreceptor ribbons, was also observed, indicating that this receptor may be expressed at photoreceptor terminals. Furthermore, another band of P2X7R puncta was identified below the level of the photoreceptor terminals, adjacent to the inner nuclear layer (INL). This band of P2X7R puncta colocalized with the active-zone protein, bassoon, suggesting that "synapse-like" structures exist outside photoreceptor terminals. Preembedding immunoelectron microscopy demonstrated P2X7R labeling of photoreceptor terminals adjacent to ribbons. In addition, some horizontal cell dendrites and putative "desmosome-like" junctions below cone pedicles were labeled. In the inner plexiform layer (IPL), P2X7R puncta were observed surrounding terminals immunoreactive for protein kinase C-,, a marker of rod bipolar cells. Double labeling with bassoon in the IPL revealed extensive colocalization, indicating that P2X7R is likely to be found at conventional cell synapses. This finding was confirmed at the ultrastructural level: only processes presynaptic to rod bipolar cells were found to be labeled for the P2X7R, as well as other conventional synapses. These findings suggest that purines play a significant role in neurotransmission within the retina, and may modulate both photoreceptor and rod bipolar cell responses. J. Comp. Neurol. 472:13,23, 2004. © 2004 Wiley-Liss, Inc. [source] The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stabilityDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2008Louis Saint-Amant Abstract The zebrafish ennui mutation was identified from a mutagenesis screen for defects in early behavior. Homozygous ennui embryos swam more slowly than wild-type siblings but normal swimming recovered during larval stages and homozygous mutants survived until adulthood. Electrophysiological recordings from motoneurons and muscles suggested that the motor output of the CNS following mechanosensory stimulation was normal in ennui, but the synaptic currents at the neuromuscular junction were significantly reduced. Analysis of acetylcholine receptors (AChRs) in ennui muscles showed a marked reduction in the size of synaptic clusters and their aberrant localization at the myotome segment borders of fast twitch muscle. Prepatterned, nerve-independent AChR clusters appeared normal in mutant embryos and dispersed upon outgrowth of motor axons onto the muscles. Genetic mosaic analysis showed that ennui is required cell autonomously in muscle fibers for normal synaptic localization of AChRs. Furthermore, exogenous agrin failed to induce AChR aggregation, suggesting that ennui is crucial for agrin function. Finally, motor axons branched more extensively in ennui fast twitch muscles especially in the region of the myotome borders. These results suggest that ennui is important for nerve-dependent AChR clustering and the stability of axon growth. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapsesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Elaine C. Budreck Abstract Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1,4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1,NL3 and NL2,NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses. [source] NMDA receptor subunits GluR,1, GluR,3 and GluR,1 are enriched at the mossy fibre,granule cell synapse in the adult mouse cerebellumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2001Kazuyuki Yamada Abstract Cerebellar N -methyl- d -aspartate (NMDA) receptors are concentrated in the granular layer and are involved in motor coordination and the induction of long-term potentiation at mossy fibre,granule cell synapses. In the present study, we used immunohistochemistry to examine the distribution of NMDA receptor subunits in the adult mouse cerebellum. We found that appropriate pepsin pretreatment of sections greatly enhanced the sensitivity and specificity of immunohistochemical detection. As a result, intense immunolabelling for GluR,1 (NR2A), GluR,3 (NR2C), and GluR,1 (NR1) all appeared in synaptic glomeruli of the granular layer. Double immunofluorescence showed that these subunits were colocalized in individual synaptic glomeruli. Within the glomerulus, NMDA receptor subunits were located between centrally-located huge mossy fibre terminals and peripherally-located tiny Golgi axon terminals. By immunoelectron microscopy, all three subunits were detected at the postsynaptic junction in granule cell dendrites, forming synapses with mossy fibre terminals. Consistent with the known functional localization, GluR,1, GluR,3, and GluR,1 are, thus, anatomically concentrated at the mossy fibre,granule cell synapse. By contrast, immunohistochemical signals were very low in Purkinje cell somata and dendrites in the molecular layer. The lack of GluR,1 immunolabelling in Purkinje cells was unexpected because the cells express GluR,1 mRNA at high levels and high levels of GluR,1 protein in the molecular layer were revealed by immunoblot. As Purkinje cells are exceptionally lacking GluR, expression, the discrepant result may provide in vivo evidence suggesting the importance of accompanying GluR, subunits in synaptic localization of GluR,1. [source] AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location,ANNALS OF NEUROLOGY, Issue 4 2009Meizan Lai MD Objective To report the clinical and immunological features of a novel autoantigen related to limbic encephalitis (LE) and the effect of patients' antibodies on neuronal cultures. Methods We conducted clinical analyses of 10 patients with LE. Immunoprecipitation and mass spectrometry were used to identify the antigens. Human embryonic kidney 293 cells expressing the antigens were used in immunocytochemistry and enzyme-linked immunoabsorption assay. The effect of patients' antibodies on cultures of live rat hippocampal neurons was determined with confocal microscopy. Results Median age was 60 (38,87) years; 9 were women. Seven had tumors of the lung, breast, or thymus. Nine patients responded to immunotherapy or oncological therapy, but neurological relapses, without tumor recurrence, were frequent and influenced the long-term outcome. One untreated patient died of LE. All patients had antibodies against neuronal cell surface antigens that by immunoprecipitation were found to be the glutamate receptor 1 (GluR1) and GluR2 subunits of the ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Human embryonic kidney 293 cells expressing GluR1/2 reacted with all patients' sera or cerebrospinal fluid, providing a diagnostic test for the disorder. Application of antibodies to cultures of neurons significantly decreased the number of GluR2-containing AMPAR clusters at synapses with a smaller decrease in overall AMPAR cluster density; these effects were reversed after antibody removal. Interpretation Antibodies to GluR1/2 associate with LE that is often paraneoplastic, treatment responsive, and has a tendency to relapse. Our findings support an antibody-mediated pathogenesis in which patients' antibodies alter the synaptic localization and number of AMPARs. Ann Neurol 2009;65:424,434 [source] |