Home About us Contact | |||
Synaptic Events (synaptic + event)
Selected AbstractsGABAergic modulation of primary gustatory afferent synaptic efficacyDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002Andrew A. Sharp Abstract Modulation of synaptic transmission at the primary sensory afferent synapse is well documented for the somatosensory and olfactory systems. The present study was undertaken to test whether GABA impacts on transmission of gustatory information at the primary afferent synapse. In goldfish, the vagal gustatory input terminates in a laminated structure, the vagal lobes, whose sensory layers are homologous to the mammalian nucleus of the solitary tract. We relied on immunoreactivity for the GABA-transporter, GAT-1, to determine the distribution of GABAergic synapses in the vagal lobe. Immunocytochemistry showed dense, punctate GAT-1 immunoreactivity coincident with the layers of termination of primary afferent fibers. The laminar nature and polarized dendritic structure of the vagal lobe make it amenable to an in vitro slice preparation to study early synaptic events in the transmission of gustatory input. Electrical stimulation of the gustatory nerves in vitro produces synaptic field potentials (fEPSPs) predominantly mediated by ionotropic glutamate receptors. Bath application of either the GABAA receptor agonist muscimol or the GABAB receptor agonist baclofen caused a nearly complete suppression of the primary fEPSP. Coapplication of the appropriate GABAA or GABAB receptor antagonist bicuculline or CGP-55845 significantly reversed the effects of the agonists. These data indicate that GABAergic terminals situated in proximity to primary gustatory afferent terminals can modulate primary afferent input via both GABAA and GABAB receptors. The mechanism of action of GABAB receptors suggests a presynaptic locus of action for that receptor. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 133,143, 2002 [source] Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic taggingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006Jennie Z. Young Abstract The late-phase of long-term potentiation (L-LTP) in hippocampal area CA1 requires gene expression and de novo protein synthesis but it is expressed in an input-specific manner. The ,synaptic tag' theory proposes that gene products can only be captured and utilized at synapses that have been ,tagged' by previous activity. The mechanisms underlying synaptic tagging, and its activity dependence, are largely undefined. Previously, we reported that low-frequency stimulation (LFS) decreases the stability of L-LTP in a cell-wide manner by impairing synaptic tagging. We show here that a phosphatase inhibitor, okadaic acid, blocked homosynaptic and heterosynaptic inhibition of L-LTP by prior LFS. In addition, prior LFS homosynaptically and heterosynaptically impaired chemically induced synaptic facilitation elicited by forskolin/3-isobutyl-1-methylxanthine, suggesting that there is a cell-wide dampening of cAMP/protein kinase A (PKA) signaling concurrent with phosphatase activation. We propose that prior LFS impairs expression of L-LTP by inhibiting synaptic tagging through its actions on the cAMP/PKA pathway. In support of this notion, we show that hippocampal slices from transgenic mice that have genetically reduced hippocampal PKA activity display impaired synaptic capture of L-LTP. An inhibitor of PKA, KT-5720, also blocked synaptic capture of L-LTP. Moreover, pharmacological activation of the cAMP/PKA pathway can produce a synaptic tag to capture L-LTP expression, resulting in persistent synaptic facilitation. Collectively, our results show that PKA is critical for synaptic tagging and for input-specific L-LTP. PKA-mediated signaling can be constrained by prior episodes of synaptic activity to regulate subsequent L-LTP expression and perhaps control the integration of multiple synaptic events over time. [source] Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neuronsJOURNAL OF NEUROCHEMISTRY, Issue 4 2007Yingchun Ni Abstract The major excitatory neurotransmitter in the CNS, glutamate, can be released exocytotically by neurons and astrocytes. Glutamate released from neurons can affect adjacent astrocytes by changing their intracellular Ca2+ dynamics and, vice versa, glutamate released from astrocytes can cause a variety of responses in neurons such as: an elevation of [Ca2+]i, a slow inward current, an increase of excitability, modulation of synaptic transmission, synchronization of synaptic events, or some combination of these. This astrocyte-neuron signaling pathway might be a widespread phenomenon throughout the brain with astrocytes possessing the means to be active participants in many functions of the CNS. Thus, it appears that the vesicular release of glutamate can serve as a common denominator for two of the major cellular components of the CNS, astrocytes and neurons, in brain function. [source] Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdalaTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Raffaella Geracitano GABAergic medial paracapsular intercalated (Imp) neurons of amygdala are thought of as playing a central role in fear learning and extinction. We report here that the synaptic network formed by these neurons exhibits distinct short-term plastic synaptic responses. The success rate of synaptic events evoked at a frequency range of 0.1,10 Hz varied dramatically between different connected cell pairs. Upon enhancing the frequency of stimulation, the success rate increased, decreased or remained constant, in a similar number of cell pairs. Such synaptic heterogeneity resulted in inhibition of the firing of the postsynaptic neurons with different efficacies. Moreover, we found that the different synaptic weights were mainly determined by diversity in presynaptic release probabilities rather than postsynaptic changes. Sequential paired recording experiments demonstrated that the same presynaptic neuron established the same type of synaptic connections with different postsynaptic neurons, suggesting the absence of target-cell specificity. Conversely, the same postsynaptic neuron was contacted by different types of synaptic connections formed by different presynaptic neurons. A detailed anatomical analysis of the recorded neurons revealed discrete and unexpected peculiarities in the dendritic and axonal patterns of different cell pairs. In contrast, several intrinsic electrophysiological responses were homogeneous among neurons, and synaptic failure counts were not affected by presynaptic cannabinoid 1 or GABAB receptors. We propose that the heterogeneous functional connectivity of Imp neurons, demonstrated by this study, is required to maintain the stability of firing patterns which is critical for the computational role of the amygdala in fear learning and extinction. [source] |