Synaptic Communication (synaptic + communication)

Distribution by Scientific Domains


Selected Abstracts


Modulation and metamodulation of synapses by adenosine

ACTA PHYSIOLOGICA, Issue 2 2010
J. A. Ribeiro
Abstract The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of ,regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses. [source]


GluR3 subunit regulates sleep, breathing and seizure generation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2008
Hendrik W. Steenland
Abstract The functional role of GluR3 AMPA (,-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor subunits has remained elusive. In vitro studies of genetic knockout mice have not yielded significant alterations in synaptic communication. However, behavioural approaches utilizing knockout mice have shown that the subunit may be involved in exploration and motor coordination, suggesting that in vivo methodologies may be more forthcoming. We tested the hypothesis that GluR3 subunits are involved in the modulation of neural network activity. We used a freely behaving mouse model to examine the effect of GluR3,/, on field potential recordings of electroencephalogram, vital functions (i.e. breathing and heart rate) and muscle tone across natural sleep and wakefulness states. We found that GluR3,/, mice virtually lack electroencephalographic signatures of NREM sleep (n = 9) as demonstrated by reduction in electroencephalogram power in the low-frequency bands (,1, ,2 and ,). In addition, three of nine GluR3,/, mice expressed seizure activity during wakefulness and sleep, suggesting that deletion of the GluR3 gene may predispose to seizure. GluR3 gene knockout also produced state-dependent respiratory modulation, with a selective reduction in breathing rate during behavioural inactivity. These findings show that GluR3 subunits have diverse neurophysiological impact, modulating oscillatory networks for sleep, breathing and seizure generation. Finally, this is the first study to demonstrate the feasibility of direct diaphragm electromyogram recordings in freely behaving mice. [source]


Alpha-synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Nanping Wu
Abstract ,-Synuclein (,-Syn) is a presynaptic protein implicated in Parkinson's disease (PD). Mice overexpressing human wildtype (WT) ,-Syn under the Thy1 promoter show high levels of ,-Syn in cortical and subcortical regions, exhibit progressive sensorimotor anomalies, as well as non-motor abnormalities and are considered models of pre-manifest PD as there is little evidence of early loss of dopaminergic (DA) neurons. We used whole-cell patch clamp recordings from visually identified striatal medium-sized spiny neurons (MSSNs) in slices from ,-Syn and WT littermate control mice at 35, 90 and 300 days of age to examine corticostriatal synaptic function. MSSNs displayed significant decreases in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in ,-Syn mice at all ages. This difference persisted in the presence of tetrodotoxin, indicating it was independent of action potentials. Stimulation thresholds for evoking EPSCs were significantly higher and responses were smaller in ,-Syn mice. These data suggest a decrease in neurotransmitter release at the corticostriatal synapse. At 90 days the frequency of spontaneous GABAA receptor-mediated synaptic currents was decreased in MSSNs but increased in cortical pyramidal neurons. These observations indicate that high levels of expression of ,-Syn alter corticostriatal synaptic function early and they provide evidence for early synaptic dysfunction in a pre-manifest model of PD. Of importance, these changes are opposite to those found in DA-depletion models, suggesting that before degeneration of DA neurons in the substantia nigra synaptic adaptations occur at the corticostriatal synapse that may initiate subtle preclinical manifestations. © 2009 Wiley-Liss, Inc. [source]


Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex

THE JOURNAL OF PHYSIOLOGY, Issue 12 2010
William M. Connelly
Neocortical fast-spiking (FS) basket cells form dense autaptic connections that provide inhibitory GABAergic feedback after each action potential. It has been suggested that these autaptic connections are used because synaptic communication is sensitive to neuromodulation, unlike the voltage-sensitive potassium channels in FS cells. Here we show that layer V FS interneurons form autaptic connections that are largely perisomatic, and without perturbing intracellular Cl, homeostasis, that perisomatic GABAergic currents have a reversal potential of ,78 ± 4 mV. Using variance,mean analysis, we demonstrate that autaptic connections have a mean of 14 release sites (range 4,26) with a quantal amplitude of 101 ± 16 pA and a probability of release of 0.64 (Vcommand=,70 mV, [Ca2+]o= 2 mm, [Mg2+]o= 1 mm). We found that autaptic GABA release is sensitive to GABAB and muscarinic acetylcholine receptors, but not a range of other classical neuromodulators. Our results indicate that GABA transporters do not regulate FS interneuron autapses, yet autaptically released GABA does not act at GABAB or extrasynaptic GABAA receptors. This research confirms that the autaptic connections of FS cells are indeed susceptible to modulation, though only via specific GABAergic and cholinergic mechanisms. [source]


Inhibition of ,7-containing nicotinic ACh receptors by muscarinic M1 ACh receptors in rat hippocampal CA1 interneurones in slices

THE JOURNAL OF PHYSIOLOGY, Issue 5 2009
Jian-xin Shen
Cys-loop ligand-gated nicotinic ACh receptors (nAChRs) and G protein-coupled muscarinic ACh receptors (mAChRs) are expressed on rat hippocampal interneurones where they can regulate excitability, synaptic communication and cognitive function. Even though both nAChRs and mAChRs appear to co-localize to the same interneurones, it is not clear whether there is crosstalk between them. We utilized patch-clamp techniques to investigate this issue in rat hippocampal CA1 interneurones in slices under conditions where synaptic transmission was blocked. The ,7 nAChR-mediated currents were activated by choline, and when the activation of this receptor was preceded by the activation of the M1 mAChR subtype, the amplitude of ,7 responses was significantly reduced in a rapidly reversible and voltage-independent manner, without any change in the kinetics of responses. This M1 mAChR-mediated inhibition of ,7 nAChRs was through a PLC-, calcium- and PKC-dependent signal transduction cascade. These data show that M1 mAChRs and ,7 nAChRs are functionally co-localized on individual rat hippocampal interneurones where the activation of these particular mAChRs inhibits ,7 nAChR function. This information will help to understand how these cholinergic receptor systems might be regulating neuronal excitability in the hippocampus in a manner that has relevance for synaptic plasticity and cognition. [source]