Systolic Strain (systolic + strain)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Relationship between Strain Rate Imaging and Coronary Flow Reserve in Assessing Myocardial Viability after Acute Myocardial Infarction

ECHOCARDIOGRAPHY, Issue 8 2010
Ph.D., Seong-Mi Park M.D.
Objectives: To evaluate the relationship between strain rate (SR) imaging and coronary flow reserve (CFR) in assessing viability of akinetic myocardium after acute myocardial infarction (MI). Methods: Forty patients with acute first ST-elevation MI were analyzed. SR imaging and CFR by intracoronary flow measurement were obtained on the same day, 3,5 days after primary percutaneous coronary intervention. Viability of the akinetic myocardium was determined on 6-week echocardiography. Results: Systolic SR (SRs, ,0.42 0.10 vs. ,0.35 0.11 per second, P = 0.03), early diastolic SR (SRe, 0.68 0.31 vs. 0.41 0.22 per second, P = 0.003), and systolic strain (Ss, ,5.9 3.4 vs. ,2.5 4.0%, P = 0.04) were greater in akinetic, but viable myocardium of 21 patients than in akinetic and nonviable myocardium of 19 patients. CFR was also higher in patients with akinetic, but viable myocardium (2.0 0.5 vs. 1.5 0.5, P < 0.001). SRs, SRe, and Ss were significantly related to CFR (r =,0.50, r = 0.58, r =,0.56, respectively, all P , 0.001) and SRe was most related to CFR (P < 0.001). The sensitivity and specificity to predict myocardial viability were 85.7% and 68.4% for CFR (cutoff = 1.75), and 90.5% and 57.9% for SRe (cutoff = 0.37 per second), respectively. Conclusions: The degree of myocardial deformation determined by SR imaging was related to the degree of microvascular integrity determined by CFR, and can be used as a noninvasive method to predict myocardial viability after acute MI. (Echocardiography 2010;27:977-984) [source]


Long-Term Mechanical Consequences of Permanent Right Ventricular Pacing: Effect of Pacing Site

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2010
DARRYL P. LEONG M.B.B.S.
Optimal Right Ventricular Pacing,Introduction: Long-term right ventricular apical (RVA) pacing has been associated with adverse effects on left ventricular systolic function; however, the comparative effects of right ventricular outflow tract (RVOT) pacing are unknown. Our aim was therefore to examine the long-term effects of septal RVOT versus RVA pacing on left ventricular and atrial structure and function. Methods: Fifty-eight patients who were prospectively randomized to long-term pacing either from the right ventricular apex or RVOT septum were studied echocardiographically. Left ventricular (LV) and atrial (LA) volumes were measured. LV 2D strain and tissue velocity images were analyzed to measure 18-segment time-to-peak longitudinal systolic strain and 12-segment time-to-peak systolic tissue velocity. Intra-LV synchrony was assessed by their respective standard deviations. Interventricular mechanical delay was measured as the difference in time-to-onset of systolic flow in the RVOT and LV outflow tract. Septal A' was measured using tissue velocity images. Results: Following 29 10 months pacing, there was a significant difference in LV ejection fraction (P < 0.001), LV end-systolic volume (P = 0.007), and LA volume (P = 0.02) favoring the RVOT-paced group over the RVA-paced patients. RVA-pacing was associated with greater interventricular mechanical dyssynchrony and intra-LV dyssynchrony than RVOT-pacing. Septal A' was adversely affected by intra-LV dyssynchrony (P < 0.05). Conclusions: Long-term RVOT-pacing was associated with superior indices of LV structure and function compared with RVA-pacing, and was associated with less adverse LA remodeling. If pacing cannot be avoided, the RVOT septum may be the preferred site for right ventricular pacing. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1120-1126) [source]


Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: Comparison with conventional tagging

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2009
Mirja Neizel MD
Abstract Purpose To evaluate the ability of strain-encoded (SENC) magnetic resonance imaging (MRI) for regional systolic and diastolic strain analysis of the myocardium in healthy volunteers. Materials and Methods Circumferential and longitudinal peak systolic strain values of 75 healthy volunteers (35 women and 40 men, mean age 44 12 years) were measured using SENC at 1.5T. MR tagging was used as the reference standard for measuring regional function. Diastolic function was assessed in the 10 youngest (24 8 years) and 10 oldest (62 5 years) subjects. Results Peak strain values assessed with SENC were comparable to those obtained by MR tagging, showing narrow limits of agreement (limits of agreement ,5.6% to 8.1%). Regional heterogeneity was observed between different segments of the left ventricle (LV) by both techniques (P < 0.001). Longitudinal strain obtained by SENC was also heterogenous (P < 0.001). Interestingly, no age- or gender-specific differences in peak systolic strain were observed, whereas the peak rate of relaxation of circumferential strain rate was decreased in the older group. Conclusion SENC is a reliable tool for accurate and objective quantification of regional myocardial systolic as well as diastolic function. In agreement with tagged MRI, SENC detected slightly heterogeneous myocardial strain within LV segments. J. Magn. Reson. Imaging 2009;29:99,105. 2008 Wiley-Liss, Inc. [source]


Strain-Encoded Cardiac Magnetic Resonance for the Evaluation of Chronic Allograft Vasculopathy in Transplant Recipients

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2009
G. Korosoglou
The aim of our study was to investigate the ability of Strain-Encoded magnetic resonance imaging (MRI) to detect cardiac allograft vasculopathy (CAV) in heart transplantation (HTx)-recipients. In consecutive subjects (n = 69), who underwent cardiac catheterization, MRI was performed for quantification of myocardial strain and perfusion reserve. Based on angiographic findings subjects were classified: group A including patients with normal vessels; group B, patients with stenosis <50%; and group C, patients with severe CAV (stenosis , 50%). Significant correlations were observed between myocardial perfusion reserve with peak systolic strain (r =,0.53, p < 0.001) and with mean diastolic strain rate (r = 0.82, p < 0.001). Peak systolic strain and strain rate were significantly reduced only in group C, while mean diastolic strain rate and myocardial perfusion reserve were already reduced in group B and A. Myocardial perfusion reserve and mean diastolic strain rate had higher accuracy for the detection of CAV (AUC = 0.95, 95% CI = 0.87,0.99 and AUC = 0.93, 95% CI = 0.84,0.98, respectively) and followed peak systolic strain and strain rate (AUC = 0.80, 95% CI = 0.69,0.89 and AUC = 0.78, 95% CI = 0.67,0.87, respectively). Besides the quantification of myocardial perfusion, the estimation of the diastolic strain rate is a useful parameter for CAV assessment. In combination with the clinical evaluation, these parameters may be effective tools for the routine surveillance of HTx-recipients. [source]


Restrictive Right Ventricular Physiology and Right Ventricular Fibrosis as Assessed by Cardiac Magnetic Resonance and Exercise Capacity After Biventricular Repair of Pulmonary Atresia and Intact Ventricular Septum

CLINICAL CARDIOLOGY, Issue 2 2010
Xue-Cun Liang MD
Background The hypertrophic myocardium, myocardial fiber disarray, and endocardial fibroelastosis in pulmonary atresia and intact ventricular septum (PAIVS) may provide anatomic substrates for restrictive filling of the right ventricle. Hypothesis Restrictive right ventricle (RV) physiology is related to RV fibrosis and exercise capacity in patients after biventricular repair of PAIVS. Methods A total of 27 patients, age 16.5 5.6 years, were recruited after biventricular repair of PAIVS. Restrictive RV physiology was defined by the presence of antegrade diastolic pulmonary flow and RV fibrosis assessed by late gadolinium enhancement (LGE) cardiac magnetic resonance. Their RV function was compared with that of 27 healthy controls and related to RV LGE score and exercise capacity. Results Compared with controls, PAIVS patients had lower tricuspid annular systolic and early diastolic velocities, RV global longitudinal systolic strain, systolic strain rate, and early and late diastolic strain rates (all P < 0.05). A total of 22 (81%, 95% confidence interval: 62%,94%) PAIVS patients demonstrated restrictive RV physiology. Compared to those without restrictive RV physiology (n = 5), these 22 patients had lower RV global systolic strain, lower RV systolic and early diastolic strain rates, higher RV LGE score, and a greater percent of predicted maximum oxygen consumption (all P < 0.05). Conclusion Restrictive RV physiology reflects RV diastolic dysfunction and is associated with more severe RV fibrosis but better exercise capacity in patients after biventricular repair of PAIVS. Copyright 2010 Wiley Periodicals, Inc. [source]


Assessment of left ventricular systolic function using tissue Doppler imaging in children after successful repair of aortic coarctation

CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 1 2010
Tomasz Florianczyk
Summary Aim:, Assessment of left ventricular systolic function in children after the successful repair of aortic coarctation using tissue Doppler imaging (TDI). Methods:, The study group consisted of 32 patients (mean age 120 42 years) after the aortic coarctation repair. The TDI parameters and the conventional echocardiographic endocardial and midwall indices of the left ventricular systolic function were analysed and compared with the results obtained from 34 healthy children. Results:, The systolic mitral annulus motion velocity, systolic myocardial velocity of the medial segment of the left ventricular septal wall, left ventricular strain and Strain Rate (SR) in the study group were significantly higher than in the control group, respectively: 692 075 cm s,1 versus 645 083 cm s,1; 582 103 cm s,1 versus 508 111 cm s,1; ,2867 604% versus ,2253 644% and ,320 076 s,1 versus ,239 049 s,1. Except midwall shortening fraction the conventional endocardial and midwall echocardiographic indices in the study group were significantly higher in comparison to the healthy controls. The left ventricular systolic meridional fibre stress and end-systolic circumferential wall stress did not differ between the examined groups. There were no differences of the TDI or conventional parameters between hypertensive and normotensive patients. Conclusions:, Left ventricular systolic performance in children after the surgical repair of aortic coarctation reveals tendency to rise in late follow-up despite a satisfactory result after surgery. Higher systolic strain and SR in children treated due to coarctation of the aorta may suggest the increased preserved left ventricular performance despite normalization of afterload. [source]


Assessment of regional systolic and diastolic dysfunction in familial hypertrophic cardiomyopathy using MR tagging,

MAGNETIC RESONANCE IN MEDICINE, Issue 3 2003
Daniel B. Ennis
Abstract Diastolic and systolic left ventricular (LV) dysfunction often significantly contribute to disabling symptoms in familial hypertrophic cardiomyopathy (FHC). This study compares regional LV function (midwall circumferential strain) during systole and diastole in eight FHC patients and six normal volunteers (NVs) using MR tagging. A prospectively-gated fast gradient-echo sequence with an echo-train readout was modified to support complementary spatial modulation of magnetization (CSPAMM) tagging and full cardiac cycle data acquisition using the cardiac phase to order reconstruction (CAPTOR), thus providing tag persistence and data acquisition during the entire cardiac cycle. Total systolic strains in FHC patients were significantly reduced in septal and inferior regions (both P < 0.01). Early-diastolic strain rates were reduced in all regions of the FHC group (all P < 0.03). The combination of CSPAMM and CAPTOR allows regional indices of myocardial function to be quantified throughout the cardiac cycle. This technique reveals regional differences in systolic and diastolic impairment in FHC patients. Magn Reson Med 50:638,642, 2003. Published 2003 Wiley-Liss, Inc. [source]