Symbiotic Algae (symbiotic + alga)

Distribution by Scientific Domains


Selected Abstracts


Genetics of the relationship between the ciliate Paramecium bursaria and its symbiotic algae

INVERTEBRATE BIOLOGY, Issue 4 2007
Yuki Tonooka
Abstract. Paramecium bursaria, a freshwater protozoan, typically harbors hundreds of symbiotic algae (Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria. Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria, F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp. [source]


Biogeography and microhabitat variation in temperate algal-invertebrate symbioses: zooxanthellae and zoochlorellae in two Pacific intertidal sea anemones, Anthopleura elegantissima and A. xanthogrammica

INVERTEBRATE BIOLOGY, Issue 2 2000
David Secord
Abstract. Temperate sea anemones in the genus Anthopleura are unique among cnidarians in harboring two phylogenetically distinct symbiotic algae, zooxanthellae (golden-brown dinophytes, Symbiodinium) and zoochlorellae (green chlorophytes). To determine whether their physiological differences generate patterns in anemone habitat and biogeographic distribution, we sampled symbiotic algae in the small clonal A. elegantissima and the large solitary A. xanthogrammica at 8 field sites (and the other large solitary Anthopleura species at one site) spanning 18° of latitude along 2500 km of the Pacific coast of North America. We found that zoochlorellae predominate in low intertidal habitats and northerly latitudes and in A. xanthogrammica, while zooxanthellae constitute the majority of symbionts in high intertidal habitats and more southerly latitudes and in A. elegantissima. These data are consistent with published predictions based on photosynthetic efficiency of the two algae under varied temperature and light regimes in the laboratory. This anemone-algal system provides a potential biological signal of benthic intertidal communities' responses to El Niño events and long-term climate changes in the Pacific. [source]


Heterotrophy in Tropical Scleractinian Corals

BIOLOGICAL REVIEWS, Issue 1 2009
Fanny Houlbrèque
Abstract The dual character of corals, that they are both auto- and heterotrophs, was recognized early in the twentieth Century. It is generally accepted that the symbiotic association between corals and their endosymbiotic algae (called zooxanthellae) is fundamental to the development of coral reefs in oligotrophic tropical oceans because zooxanthellae transfer the major part of their photosynthates to the coral host (autotrophic nutrition). However, numerous studies have confirmed that many species of corals are also active heterotrophs, ingesting organisms ranging from bacteria to mesozooplankton. Heterotrophy accounts for between 0 and 66% of the fixed carbon incorporated into coral skeletons and can meet from 15 to 35% of daily metabolic requirements in healthy corals and up to 100% in bleached corals. Apart from this carbon input, feeding is likely to be important to most scleractinian corals, since nitrogen, phosphorus, and other nutrients that cannot be supplied from photosynthesis by the coral's symbiotic algae must come from zooplankton capture, particulate matter or dissolved compounds. A recent study showed that during bleaching events some coral species, by increasing their feeding rates, are able to maintain and restore energy reserves. This review assesses the importance and effects of heterotrophy in tropical scleractinian corals. We first provide background information on the different food sources (from dissolved organic matter to meso- and macrozooplankton). We then consider the nutritional inputs of feeding. Finally, we review feeding effects on the different physiological parameters of corals (tissue composition, photosynthesis and skeletal growth). [source]