Swimming Activity (swimming + activity)

Distribution by Scientific Domains


Selected Abstracts


Swimming activity and behaviour of European Anguilla anguilla glass eels in response to photoperiod and flow reversal and the role of energy status

JOURNAL OF FISH BIOLOGY, Issue 9 2009
S. Bureau Du Colombier
To better understand migratory divergences among Anguilla anguilla glass eels, the behaviour of individuals caught at the time of their estuary entrance was studied through their response to a light:dark cycle and then to both water current reversal and light:dark cycle. In a first experiment, fish moving with the flow in response to dusk (M+ fish) and fish that had not exhibited any movement (M, fish) were distinguished. Anguilla anguilla from these two groups were then individually marked and their response to water current reversal compared. M+ individuals mainly exhibited negative rheotaxis with a tidal periodicity, whereas positive rheotaxis was mainly exhibited by M, individuals. Thus, M+A. anguilla glass eels showing negative rheotaxis appear to have the strongest propensity to migrate, the converse applies to M, ones showing positive rheotaxis. A small percentage of individuals (5%) were hyperactive, alternately swimming with and against the current with almost no resting phase. These fish lost c. 2 mg wet mass day,1, whereas individuals which were almost inactive lost c. 1 mg day,1. Wet and dry mass changes in relation to activity levels were compared with previous experiments and it was concluded that A. anguilla glass eel energy status might be involved in differences in migratory tendencies but other factors that might be important are discussed. It is proposed that any decrease in A. anguilla glass eel energy stores associated with global warming might lead to an increase in the proportion of sedentary individuals and thus be involved in the decrease in the recruitment to freshwater habitats. [source]


Effects of the toxic dinoflagellate, Alexandrium fundyense on three species of larval fish: a food-chain approach

JOURNAL OF FISH BIOLOGY, Issue 1 2008
J. C. Samson
Sublethal behavioural effects of exposure to paralytic shellfish toxins (PST; saxitoxin and its derivatives) from the toxic dinoflagellate Alexandrium fundyense were investigated in newly settled winter flounder Pseudopleuronectes americanus, larval sheepshead minnow Cyprinodon variegatus and larval mummichog Fundulus heteroclitus through an A. fundyense,copepod,fish food chain. Consumption of as few as six to 12 toxin-containing copepods was lethal to the fishes. After consuming fewer toxin-containing copepods, all three fish species exhibited sublethal effects from vector-mediated exposure. Prey-capture ability of mummichogs was reduced in larvae that had consumed toxic copepods, Coullana canadensis. After consuming toxic C. canadensis or mixed copepods, mummichog larvae had reduced swimming performance. Swimming activity was also significantly reduced in winter flounder after consuming toxic copepods, including time spent in motion and distance travelled. Prey capture and predator avoidance were reduced in first-feeding sheepshead minnow larvae that had consumed toxic dinoflagellate cells. Adverse effects on prey capture or predator avoidance may reduce larval survival and facilitate the transmission of PST through the food web. This study provides baseline information on sublethal effects of PST exposure on fishes using a novel food-chain approach with zooplankton as vectors. [source]


Swimming activity of seabass: comparing patterns obtained in natural environment and in re-circulating tanks under high density

JOURNAL OF FISH BIOLOGY, Issue 2004
M.-L. Bégout Anras
Seabass (Dicentrarchus labrax) swimming activity was compared between natural environments and aquaculture facilities. Behaviour under natural conditions was assessed in a saltmarsh pond (250 m2, 18 × 14 × 0·8 m) using acoustic telemetry. From several surveys, we documented the diel activity rhythm and demonstrated group effects on swimming patterns and amplitudes by comparing activity of solitary fish with that of a fish living in a group of 60. Consequences of weather variability were also analysed and revealed a high sensitivity of fish to atmospheric conditions for both swimming and demand-feeding behaviour. Behaviour in fish tanks was also studied using acoustic telemetry, as part of the EUREKA EU1 960 ,Aqua-Maki 2' project investigating aspects of fish culture in re-circulating tanks under high density. A re-circulating hexagonal tank (5·4 × 5·4 m, 1·8 m depth, 48 m3) was equipped with positioning and demand-feeding systems, oxygen and temperature probes. Initial density was 50 kg m3 in March and rose to 90 kg m3 at the end of the experiment in May. During this period, the movements of nine fish were continuously recorded for 24 h each, reaching a total of six 24 h episode at eight days interval. Swimming activity was analysed in terms of activity rhythms and space occupation specially around feeding events. The two data set and main results will be presented and compared to assess seabass behavioural plasticity and sensitivity to husbandry conditions. [source]


Swimming activity and energetic expenditure of captive rainbow trout Oncorhynchus mykiss (Walbaum) estimated by electromyogram telemetry

AQUACULTURE RESEARCH, Issue 6 2000
S J Cooke
Rainbow trout Oncorhynchus mykiss (Walbaum) are usually cultured at high densities to maximize production, but little is known about the physiological and behavioural consequences of high-density fish culture. The purpose of this study was to develop quantitative correlates of activity for fish held under conditions of increasing density. Fifteen hatchery-reared rainbow trout (mean fork length = 432.3 ± 9.2 mm) were implanted with activity (electromyogram; EMGi) transmitters and randomly assigned to each of three replicate tanks. Original tank densities (15 kg m,3) were then increased to 30 and finally to 60 kg m,3 at weekly intervals by adding additional fish. Remote telemetry signals indicated that activity increased with increasing stocking density. Fish were relatively inactive during the middle of the day, with diel activity patterns not differing among treatments. Fish were more active during periods of darkness, with activity increasing with increasing stocking density. Relationships between swimming speed, EMGi activity and oxygen consumption were developed using a respirometer and used to estimate oxygen consumption of the fish in the density treatments. Average oxygen consumption estimates increased with increasing density treatments as follows: low density = 75.6 mg kg,1 h,1; medium density = 90.0 mg kg,1 h,1; and high density = 102.6 mg kg,1 h,1. Telemetry permits quantification of the effects of increasing density on fish activity. Physiological telemetry devices may provide a useful tool for remotely monitoring animal welfare correlates under controlled conditions for fish exposed to different husbandry conditions and may prove a valuable tool for the aquaculture industry. [source]


EVOLUTION OF INTRINSIC GROWTH RATE: METABOLIC COSTS DRIVE TRADE-OFFS BETWEEN GROWTH AND SWIMMING PERFORMANCE IN MENIDIA MENIDIA

EVOLUTION, Issue 6 2006
Stephen A. Arnott
Abstract There is strong evidence that genetic capacity for growth evolves toward an optimum rather than an absolute maximum. This implies that fast growth has a cost and that trade-offs occur between growth and other life-history traits, but the fundamental mechanisms are poorly understood. Previous work on the Atlantic silverside fish Menidia menidia has demonstrated a trade-off between growth and swimming performance. We hypothesize that the trade-off derives from the competing metabolic demands associated with growth and swimming activity. We tested this by measuring standard metabolic rate (MSTD), maximum sustainable metabolic rate (MACT) and metabolic scope of laboratory-reared silversides originating from two geographically distinct populations with well-documented differences in genetic capacity for growth. The fast-growth genotype had a significantly greater MSTD than the slow-growth genotype, but a similar MACT when swum to near exhaustion. The scope for activity of the fast-growth genotype was lower than that of the slow-growth genotype. Furthermore, the fast-growth genotype eats larger meals, thereby incurring a greater postprandial oxygen demand. We conclude that a metabolic trade-off occurs between growth and other metabolic demands and that this trade-off provides a general mechanism underlying the evolution of growth rate. [source]


Scared fish get lazy, and lazy fish get fat

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2009
Frank Johansson
Summary 1Many biological textbooks present predator-induced morphological changes in prey species as an example of an adaptive response, because the morphological change is associated with lower predation risk. Here we show that the adaptive morphological response observed in many systems may actually be an indirect effect of decreased activity , which reduces the predation risk , rather than a direct adaptive response. 2One of the classical examples comes from crucian carp, where the presence of pike leads to a deeper body. We manipulated pike cues (presence and absence) and water current (standing and running water) and found that both standing water and pike cues similarly and independently induced a deeper body. 3Since the presence of pike cues as well as standing water might be associated with low swimming activity, we suggest that the presence of pike causes a reduction in activity (antipredator behaviour). Reduced activity subsequently induces a deeper body, possibly because the energy saved is allocated to a higher growth rate. 4Our result suggests that even if morphological change is adaptive, it might be induced indirectly via activity. This important conceptual difference may be similar in many other systems. [source]


The relationship between caudal differential pressure and activity of Atlantic cod: a potential method to predict oxygen consumption of free-swimming fish

JOURNAL OF FISH BIOLOGY, Issue 4 2007
M. F. Steinhausen
This study reports the first results on telemetry of caudal differential pressure during spontaneous swimming activity in cod Gadus morhua and demonstrates that tail-beat pressure may be used as a predictor of activity and swimming costs of free-swimming cod. Tail-beat pressure was monitored using a differential pressure sensor on the caudal peduncle of cod and spontaneous swimming activity was quantified using a customized video-computer tracking programme. Tail-beat pressure was found to correlate with (1) swimming speed (U) and oxygen consumption during forced swimming and (2) mean U during spontaneous activity. Based on the relationship between and the integrated pressure performed by the tail during forced swimming, it should be possible to predict during spontaneous activity. To gain precise measures of activity and thus predictions of for free-swimming fish, however, individual calibrations are necessary. [source]


Swimming activity of seabass: comparing patterns obtained in natural environment and in re-circulating tanks under high density

JOURNAL OF FISH BIOLOGY, Issue 2004
M.-L. Bégout Anras
Seabass (Dicentrarchus labrax) swimming activity was compared between natural environments and aquaculture facilities. Behaviour under natural conditions was assessed in a saltmarsh pond (250 m2, 18 × 14 × 0·8 m) using acoustic telemetry. From several surveys, we documented the diel activity rhythm and demonstrated group effects on swimming patterns and amplitudes by comparing activity of solitary fish with that of a fish living in a group of 60. Consequences of weather variability were also analysed and revealed a high sensitivity of fish to atmospheric conditions for both swimming and demand-feeding behaviour. Behaviour in fish tanks was also studied using acoustic telemetry, as part of the EUREKA EU1 960 ,Aqua-Maki 2' project investigating aspects of fish culture in re-circulating tanks under high density. A re-circulating hexagonal tank (5·4 × 5·4 m, 1·8 m depth, 48 m3) was equipped with positioning and demand-feeding systems, oxygen and temperature probes. Initial density was 50 kg m3 in March and rose to 90 kg m3 at the end of the experiment in May. During this period, the movements of nine fish were continuously recorded for 24 h each, reaching a total of six 24 h episode at eight days interval. Swimming activity was analysed in terms of activity rhythms and space occupation specially around feeding events. The two data set and main results will be presented and compared to assess seabass behavioural plasticity and sensitivity to husbandry conditions. [source]


Expression of four muscle proteins at different growth stages of Günther's walking catfish Clarias macrocephalus

AQUACULTURE RESEARCH, Issue 9 2010
Supawadee Poompuang
Abstract The complete cDNA sequences of four contractile muscle genes of walking catfish Clarias macrocephalus were characterized by assembling partial EST sequences from a skeletal muscle cDNA library. The four genes were parvalbumin 4 (PV4) (670 bp), troponin C (TnC) (1065 bp), troponin I (TnI) (843 bp) and myosin light chain 3 (MLC3) (953 bp), leading to deduced amino acid sequences of 109, 160, 176 and 150 residues respectively. During the larval stage, TnC mRNA showed the highest levels of expression with a 1.4-fold increase from day 1 to day 30 post hatch. At 90 days, the relative expression levels of PV4, TnC and MLC3 were the highest, with similar proportions in the skeletal muscle, corresponding to the highest relative growth rate of walking catfish. Expression of the three calcium-binding proteins remained high in 6-month-old fish, with higher levels of PV4. The different proportions of muscle proteins expressed suggested the significance of their contributions to fish growth and appeared to be correlated with the functional properties of muscle cells, which were observed from changes in the swimming activity of the fish. [source]