Home About us Contact | |||
Swelling Agent (swelling + agent)
Selected AbstractsThe incorporation of rigid diol monomers into poly(butylene terephthalate) via solid-state copolymerization and melt copolymerization,JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2008M. A. G. Jansen Abstract Incorporation of 2,2-bis[4-(2-hydroxyethoxy)phenyl]propane (Dianol 220®) into poly(butylene terephthalate) (PBT) via solid-state copolymerization (SSP) showed that Dianol, besides being the reactant, also acts as a swelling agent for rigid amorphous PBT chain segments. Being swollen, these amorphous chain segments become sufficiently mobile to contribute to the SSP process. The thermal behavior of the resulting copolyesters is comparable with melt copolymerized copolymers, although having a different chemical microstructure. The main reason is a full miscibility in the melt of unmodified PBT chain segments and modified chain segments, which eliminates the advantages of a blocky microstructure for the SSP copolyesters. However, incorporation of 2,2,-biphenyldimethanol (BDM) into PBT resulted in a higher crystallization temperature compared with PBT,Dianol copolymers of equal composition. Preordering of polymer chains in the melt by incorporating rigid, phase separating BDM-moieties, preferably via SSP to obtain a non-random distribution, may be the origin of the enhanced crystallization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1203,1217, 2008 [source] Loading and Release of Ibuprofen in Multi- and Monofilament Surgical SuturesMACROMOLECULAR BIOSCIENCE, Issue 9 2006Raül Zurita Abstract Summary: The preparation of mono- and multifilament sutures incorporating ibuprofen as an anti-inflammatory agent is considered. Poly(p -dioxanone) monofilament samples can be loaded by a molecular diffusion process using a swelling agent such as dichloromethane. The mechanical properties have been measured and have not shown a significant change for the ibuprofen loaded samples in knot tensile assays. The kinetics of both the loading process and the release in a Sörensen's medium at 37,°C have been investigated. Diffusion coefficients have also been estimated from film and slab poly(p -dioxanone) samples containing ibuprofen and their release behavior compared to that shown by monofilaments. Release from a coating copolymer based on lactide, , -caprolactone and trimethylene carbonate (PLA/PCA/PTMC 10/60/30) has also been studied. This coating solubilizes ibuprofen molecules well and can be used for braided sutures or when a rapid dose of ibuprofen is preferred. [source] Layered silicate/epoxy nanocomposites: synthesis, characterization and propertiesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2004Nehal A. Salahuddin Abstract Novel epoxy-clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T-403), primary polyethertriamine (Jeffamine T-5000) and three types of polyoxypropylene diamine (Jeffamine D-230, D-400, D-2000) with different molecular weight were used to treat Na-montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X-ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine-MMT intercalates. Jeffamine D-230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy-clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000-MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5,nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140,nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three-fold increase in the energy required for breaking the test specimen was found for T5000-MMT/epoxy containing 7,wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd. [source] Control of Drug Release through the In Situ Assembly of Stimuli-Responsive Ordered Mesoporous Silica with Magnetic ParticlesCHEMPHYSCHEM, Issue 17 2007Shenmin Zhu Dr. Abstract A site-selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli-responsive ordered SBA-15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant-template sol-gel method and control of transport through polymerization of N-isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3,g,1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt,%, which is almost twice as large as the highest value based on SBA-15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32,°C, indicating a typical thermosensitive controlled release. [source] A Versatile Solvent-Free "One-Pot" Route to Polymer Nanocomposites and the in situ Formation of Calcium Phosphate/Layered Silicate Hybrid NanoparticlesADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Hans Weickmann Abstract Poly(methyl methacrylate) (PMMA), polystyrene (PS), and polyurethane (PU) nanocomposites containing well-dispersed calcium phosphate/layered silicate hybrid nanoparticles were prepared in a versatile solvent-free "one-pot" process without requiring separate steps, such as organophilic modification, purification, drying, dispersing, and compounding, typical for many conventional organoclay nanocomposites. In this "one-pot" process, alkyl ammonium phosphates were added as swelling agents to a suspension of calcium/layered silicate in styrene, methyl methacrylate, or polyols prior to polymerization. Alkyl ammonium phosphates were prepared in situ by reacting phosphoric acid with an equivalent amount of alkyl amines such as stearyl amine (SA) or the corresponding ester- and methacrylate-functionalized tertiary alkyl amines, obtained via Michael Addition of SA with methyl acrylate or ethylene 2-methacryloxyethyl acrylate. Upon contact with the calcium bentonite suspension, the cation exchange of Ca2+ in the silicate interlayers for alkyl ammonium cations rendered the bentonite organophilic and enabled effective swelling in the monomer accompanied by intercalation and in situ precipitation of calcium phosphates. According to energy dispersive X-ray analysis, the calcium phosphate precipitated exclusively onto the surfaces of the bentonite nanoplatelets, thus forming easy-to-disperse calcium phosphate/layered silicate hybrid nanoparticles. Incorporation of 5,15,wt% of such hybrid nanoparticles into PMMA, PS, and PU afforded improved stiffness/toughness balances of the polymer nanocomposites. Functionalized alkyl ammonium phosphate addition enabled polymer attachment to the nanoparticle surfaces. Transmission electron microscopy (TEM) analyses of PU and PU-foam nanocomposites, prepared by dispersing hybrid nanoparticles in the polyols prior to isocyanate cure, revealed the formation of fully exfoliated hybrid nanoparticles. [source] |