SW Iran (sw + iran)

Distribution by Scientific Domains


Selected Abstracts


MAPPING AND CLASSIFYING FLOW UNITS IN THE UPPER PART OF THE MID-CRETACEOUS SARVAK FORMATION (WESTERN DEZFUL EMBAYMENT, SW IRAN) BASED ON A DETEMINATION OF RESERVOIR ROCK TYPES

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2007
B. Beiranvand
The mid-Cretaceous Sarvak Formation, the second-most important reservoir unit in Iran, is composed mainly of grain-supported carbonates. For the purposes of this study, flow units in the upper part of the formation were identified, mapped and classified as part of an integrated reservoir characterization study at a giant oilfield in SW Iran. Pore types and geometries, pore-scale diagenetic history and core-scale depositional attributes were logged using conventional petrographic and lithological methods. The resulting data were combined with core descriptions, mercury-injection capillary pressure data, and wireline log and geophysical data to identify five reservoir rock types: (i) highly oil-stained, grain-supported carbonates, including patch reef and barrier complex deposits with high porosities and permeabilities; (ii) leeward and seaward shoal deposits including grain-supported packstones and skeletal wackestones with high porosities and permeabilities; (iii) dominantly mud-supported lagoonal and open-marine facies with fair porosity and permeability; (iv) grain-supported but highly cemented facies which had poor reservoir characteristics; and (v) calcareous shales and shaly limestones with no reservoir quality. Based on the reservoir rock types, eight flow units were recognised. Subsequently, four reservoir zones were defined based on these flow units at a field scale. This study has contributed to our understanding of flow units in this complex carbonate reservoir, and has improved our ability to characterize and model the architecture of the reservoir from pore to core to field scale. [source]


TEMPESTITE DEPOSITS ON A STORM-INFLUENCED CARBONATE RAMP: AN EXAMPLE FROM THE PABDEH FORMATION (PALEOGENE), ZAGROS BASIN, SW IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
H. Mohseni
The Pabdeh Formation is part of a thick carbonate-siliciclastic succession in the Zagros Basin of SW Iran which includes carbonate reservoirs of Cretaceous and Cenozoic ages. From field observations and petrographic and facies analysis of exposures in the type section of the Pabdeh Formation, four lithofacies were recognized. These are from oldest to youngest: (i) a mottled, bioturbated bioclastic wackestone/mudstone facies; (ii) a wackestone/packstone facies with horizontal burrows on bedding planes; (iii) a thin-bedded bioclastic wackestone/mudstone facies alternating with thin bioclastic-oolitic-intraclastic intervals; and (iv) a bioclastic foraminiferal / algal / peloidal packstone facies. These observations indicate that facies evolved upwards from deep outer-ramp deposits to inner-ramp deposits within a shoal complex, suggesting progradation of the ramp depositional system. Storm events significantly influenced the ramp system. Storm-generated surges transported sediments from nearshore to the deeper outer-ramp environment where they were deposited as shell-lags, composed mostly of bioclastic packstones, rich in pelagic microfauna with sharp, undulatory erosional basal contacts. The packstones rest on outer ramp mudstones deposited below storm base level. Sedimentary structures in the Pabdeh Formation are those typical of storm deposits, such as hummocky cross-stratification, ripple cross-lamination, ripple marks, escape burrows on the tops of the beds, couplets of fine- and coarse-grained laminae and mixed fauna, as well as intraclasts derived from underlying facies. These distinctive sequences are interpreted to have been generated by waning storm-generated currents. The dominance of fine-grained sediments (medium to fine sand); the lack of large- scale hummocky cross-stratification; the minor amounts of intraclasts derived from underlying facies; the paucity of amalgamated tempestite beds; and the finely-laminated (mm to cm scale) couplets of coarse and fine lamina all suggest a distal tempestite facies. Palaeogeographic reconstruction of the Zagros Basin during the Eocene indicates that the study area was situated in tropical, storm-dominated palaeolatitudes. [source]


DEPOSITIONAL HISTORY AND SEQUENCE STRATIGRAPHY OF OUTCROPPING TERTIARY CARBONATES IN THE JAHRUM AND ASMARI FORMATIONS, SHIRAZ AREA (SW IRAN)

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
M. Nadjafi
The Oligo-Miocene Asmari Formation is one of the most important petroleum reservoir units in the Zagros Basin of south and SW Iran. It mainly consists of limestones and dolomitic limestones with interbedded shales, together with a few intervals of sandstone and gypsum assigned to the Ahwaz and Kalhur Members, respectively. The Asmari Formation rests on the thin-bedded limestones of the Jahrum Formation (Paleocene-Eocene). In this paper, we report on the lithofacies characteristics of these two formations using data from three measured outcrop sections near Shiraz in SW Iran. From field and petrographic data, we have identified four major lithofacies and twelve subfacies which are interpreted to have been deposited in open-marine, shoal, lagoon and tidal flat settings. We show that the Asmari and Jahrum Formations constitute two separate depositional sequences which are separated by a thin palaeosol, representing a type-one sequence boundary which can be correlated with global curves of relative sea-level. Each depositional sequence is composed of many metre-scale shallowing-upward parasequences. This is the first time that the Asmari and Jahrum Formations have been differentiated in the study area. We hope that this study will lead to a better understanding of the Asmari Formation in the subsurface in other parts of the Zagros Basin. [source]


BURIAL HISTORY RECONSTRUCTION AND THERMAL MODELLING AT KUH-E MOND, SW IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2003
M. R. Kamali
At the Kuh-e Mond anticline (Fars Province, SW Iran) and in nearby offshore structures, large volumes of natural gas are reservoired in the Permian , Early Triassic Dehram Group while heavy oil has been discovered in the Cretaceous Sarvak and Eocene Jahrum Formations. In this paper, we use data from six exploration wells and from nearby surface exposures to reconstruct the burial history at Kuh-e Mond. Regional observations show that the thick sedimentary fill in this part of the Zagros Basin was subjected to intense tectonism during the Zagros Orogeny, with a paroxysmal phase during the late Miocene and Pliocene. Thermal modelling and geochemical data from Kuh-e Mond and adjacent fields allows possible hydrocarbon generation and migration mechanisms to be identified. Maturities predicted using Lopatin's TTI model are in accordance with maturities obtained from vitrinite reflectance measurements. We show that formations which have source potential in the nearby Dezful Embayment (including the Pabdeh, Gurpi, Gadvan and Kazhdumi Formations) have not reached the oil window in the Mond wells. Moreover, their organic carbon content is very low as they were deposited in oxic, shallow-water settings. Underlying units (including the Ordovician and Cambrian) could have reached the gas window but contain little organic matter. Silurian shales (Sarchahan Formation), which generate gas at Kuh-e Gahkum and Kuh-e Faraghan (north of Bandar Abbas) and in Saudi Arabia and elsewhere in the Middle East, are absent from the Mond structure. The absence of source rocks suggests that the gas and heavy oil accumulations at Kuh-e Mond and at nearby fields have most probably undergone long-distance lateral migration from distant source kitchens. [source]


BURIAL HISTORY RECONSTRUCTION USING LATE DIAGENETIC PRODUCTS IN THE EARLY PERMIAN SILICICLASTICS OF THE FARAGHAN FORMATION, SOUTHERN ZAGROS, IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2009
S. M. Zamanzadeh
In spite of the increasing importance to hydrocarbon exploration and production of the Palaeozoic succession in the Zagros area of SW Iran, few burial history and palaeothermal modelling studies of the interval have been carried out. This paper attempts to assess the burial and palaeotemperature history of the Lower Permian Faraghan Formation which is composed of stromatolitic dolomites overlain by mainly cross-bedded sandstones. The formation grades up into the thick bedded carbonates of the Upper Permian Dalan Formation. The Faraghan and Dalan Formations are major hydrocarbon reservoir units in SW Iran and are time-equivalents of the Unayzah and Khuff Formations in Saudi Arabia, respectively. The Faraghan Formation consists of shallow-marine siliciclastics and foreshore deposits, including tidal-flat and tidal-channel, estuarine, sabkha, shoreface and offshore facies. In this study, diagenetic constituents are used to evaluate the formation's burial history in the Southern Zagros, an area for which only limited subsurface data is available. A burial history diagram for the formation was constructed for well Finu # 1 using WinBuryTM software. The diagram shows that the formation underwent progressive burial at variable rates between its deposition and the mid-Tertiary, since when it has undergone rapid uplift. Burial diagenetic products in the Faraghan Formation comprise saddle, ferroan and zoned dolomites, together with dickite, illite/sericite and chlorite minerals. Additional burial-related features include stylolites and dissolution seams. Isotopic signatures (,18O versus ,13C) of the ferroan dolomites suggest a burial trend for the formation. Reconstruction of the paragenetic sequence together with the burial history diagram suggests a maximum burial depth of about 5000 m and a wide palaeotemperature range of 80-160°C. However considering the saddle dolomites as a palaeothermometer, the temperature range narrows to 78 to 138 °C. The burial depth and temperature ranges closely correlate with the main stage of oil generation to the dry gas zone. [source]


MAPPING AND CLASSIFYING FLOW UNITS IN THE UPPER PART OF THE MID-CRETACEOUS SARVAK FORMATION (WESTERN DEZFUL EMBAYMENT, SW IRAN) BASED ON A DETEMINATION OF RESERVOIR ROCK TYPES

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2007
B. Beiranvand
The mid-Cretaceous Sarvak Formation, the second-most important reservoir unit in Iran, is composed mainly of grain-supported carbonates. For the purposes of this study, flow units in the upper part of the formation were identified, mapped and classified as part of an integrated reservoir characterization study at a giant oilfield in SW Iran. Pore types and geometries, pore-scale diagenetic history and core-scale depositional attributes were logged using conventional petrographic and lithological methods. The resulting data were combined with core descriptions, mercury-injection capillary pressure data, and wireline log and geophysical data to identify five reservoir rock types: (i) highly oil-stained, grain-supported carbonates, including patch reef and barrier complex deposits with high porosities and permeabilities; (ii) leeward and seaward shoal deposits including grain-supported packstones and skeletal wackestones with high porosities and permeabilities; (iii) dominantly mud-supported lagoonal and open-marine facies with fair porosity and permeability; (iv) grain-supported but highly cemented facies which had poor reservoir characteristics; and (v) calcareous shales and shaly limestones with no reservoir quality. Based on the reservoir rock types, eight flow units were recognised. Subsequently, four reservoir zones were defined based on these flow units at a field scale. This study has contributed to our understanding of flow units in this complex carbonate reservoir, and has improved our ability to characterize and model the architecture of the reservoir from pore to core to field scale. [source]


TEMPESTITE DEPOSITS ON A STORM-INFLUENCED CARBONATE RAMP: AN EXAMPLE FROM THE PABDEH FORMATION (PALEOGENE), ZAGROS BASIN, SW IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
H. Mohseni
The Pabdeh Formation is part of a thick carbonate-siliciclastic succession in the Zagros Basin of SW Iran which includes carbonate reservoirs of Cretaceous and Cenozoic ages. From field observations and petrographic and facies analysis of exposures in the type section of the Pabdeh Formation, four lithofacies were recognized. These are from oldest to youngest: (i) a mottled, bioturbated bioclastic wackestone/mudstone facies; (ii) a wackestone/packstone facies with horizontal burrows on bedding planes; (iii) a thin-bedded bioclastic wackestone/mudstone facies alternating with thin bioclastic-oolitic-intraclastic intervals; and (iv) a bioclastic foraminiferal / algal / peloidal packstone facies. These observations indicate that facies evolved upwards from deep outer-ramp deposits to inner-ramp deposits within a shoal complex, suggesting progradation of the ramp depositional system. Storm events significantly influenced the ramp system. Storm-generated surges transported sediments from nearshore to the deeper outer-ramp environment where they were deposited as shell-lags, composed mostly of bioclastic packstones, rich in pelagic microfauna with sharp, undulatory erosional basal contacts. The packstones rest on outer ramp mudstones deposited below storm base level. Sedimentary structures in the Pabdeh Formation are those typical of storm deposits, such as hummocky cross-stratification, ripple cross-lamination, ripple marks, escape burrows on the tops of the beds, couplets of fine- and coarse-grained laminae and mixed fauna, as well as intraclasts derived from underlying facies. These distinctive sequences are interpreted to have been generated by waning storm-generated currents. The dominance of fine-grained sediments (medium to fine sand); the lack of large- scale hummocky cross-stratification; the minor amounts of intraclasts derived from underlying facies; the paucity of amalgamated tempestite beds; and the finely-laminated (mm to cm scale) couplets of coarse and fine lamina all suggest a distal tempestite facies. Palaeogeographic reconstruction of the Zagros Basin during the Eocene indicates that the study area was situated in tropical, storm-dominated palaeolatitudes. [source]


DEPOSITIONAL HISTORY AND SEQUENCE STRATIGRAPHY OF OUTCROPPING TERTIARY CARBONATES IN THE JAHRUM AND ASMARI FORMATIONS, SHIRAZ AREA (SW IRAN)

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
M. Nadjafi
The Oligo-Miocene Asmari Formation is one of the most important petroleum reservoir units in the Zagros Basin of south and SW Iran. It mainly consists of limestones and dolomitic limestones with interbedded shales, together with a few intervals of sandstone and gypsum assigned to the Ahwaz and Kalhur Members, respectively. The Asmari Formation rests on the thin-bedded limestones of the Jahrum Formation (Paleocene-Eocene). In this paper, we report on the lithofacies characteristics of these two formations using data from three measured outcrop sections near Shiraz in SW Iran. From field and petrographic data, we have identified four major lithofacies and twelve subfacies which are interpreted to have been deposited in open-marine, shoal, lagoon and tidal flat settings. We show that the Asmari and Jahrum Formations constitute two separate depositional sequences which are separated by a thin palaeosol, representing a type-one sequence boundary which can be correlated with global curves of relative sea-level. Each depositional sequence is composed of many metre-scale shallowing-upward parasequences. This is the first time that the Asmari and Jahrum Formations have been differentiated in the study area. We hope that this study will lead to a better understanding of the Asmari Formation in the subsurface in other parts of the Zagros Basin. [source]


BURIAL HISTORY RECONSTRUCTION AND THERMAL MODELLING AT KUH-E MOND, SW IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2003
M. R. Kamali
At the Kuh-e Mond anticline (Fars Province, SW Iran) and in nearby offshore structures, large volumes of natural gas are reservoired in the Permian , Early Triassic Dehram Group while heavy oil has been discovered in the Cretaceous Sarvak and Eocene Jahrum Formations. In this paper, we use data from six exploration wells and from nearby surface exposures to reconstruct the burial history at Kuh-e Mond. Regional observations show that the thick sedimentary fill in this part of the Zagros Basin was subjected to intense tectonism during the Zagros Orogeny, with a paroxysmal phase during the late Miocene and Pliocene. Thermal modelling and geochemical data from Kuh-e Mond and adjacent fields allows possible hydrocarbon generation and migration mechanisms to be identified. Maturities predicted using Lopatin's TTI model are in accordance with maturities obtained from vitrinite reflectance measurements. We show that formations which have source potential in the nearby Dezful Embayment (including the Pabdeh, Gurpi, Gadvan and Kazhdumi Formations) have not reached the oil window in the Mond wells. Moreover, their organic carbon content is very low as they were deposited in oxic, shallow-water settings. Underlying units (including the Ordovician and Cambrian) could have reached the gas window but contain little organic matter. Silurian shales (Sarchahan Formation), which generate gas at Kuh-e Gahkum and Kuh-e Faraghan (north of Bandar Abbas) and in Saudi Arabia and elsewhere in the Middle East, are absent from the Mond structure. The absence of source rocks suggests that the gas and heavy oil accumulations at Kuh-e Mond and at nearby fields have most probably undergone long-distance lateral migration from distant source kitchens. [source]


Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: evidence for a long-lived orogeny

BASIN RESEARCH, Issue 5 2010
Stéphane Homke
ABSTRACT We present the first fission-track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene,early Eocene Amiran,Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj-Sirjan Zone. Only apatite fission-track (AFT) data have been successfully obtained, including 26 ages and 11 track-length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre-middle Jurassic at ,171 and ,225 Ma, early,late Cretaceous at ,91 Ma, Maastrichtian at ,66 Ma, middle,late Eocene at ,38 Ma and Oligocene,early Miocene at ,22 Ma. The most widespread middle,late Eocene cooling phase, around ,38 Ma, is documented by a predominant grain-age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle,late Eocene phase mostly produced a long-lasting slow- or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj-Sirjan domain and its Gaveh Rud fore-arc basin. As evidenced in this study, the Zagros orogeny was long-lived and multi-episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation. [source]