Survival Cost (survival + cost)

Distribution by Scientific Domains


Selected Abstracts


Emergence and Consequences of Division of Labor in Associations of Normally Solitary Sweat Bees

ETHOLOGY, Issue 4 2009
C. Tate Holbrook
Division of labor is a pervasive feature of animal societies, but little is known about the causes or consequences of division of labor in non-eusocial cooperative groups. We tested whether division of labor self-organizes in an incipient social system: artificially induced nesting associations of the normally solitary sweat bee Lasioglossum (Ctenonomia) NDA-1 (Hymenoptera: Halictidae). We quantified task performance and construction output by females nesting either alone or with a conspecific. Within pairs, a division of labor repeatedly arose in which one individual specialized on excavation and pushing/tamping while her nestmate guarded the nest entrance. Task specialization could not be attributed to variation in overall activity, and the degree of behavioral differentiation was greater than would be expected due to random variation, indicating that division of labor was an emergent phenomenon generated in part by social dynamics. Excavation specialists did not incur a survival cost, in contrast to previous findings for ant foundress associations. Paired individuals performed more per capita guarding, and pairs collectively excavated deeper nests than single bees , potential early advantages of social nesting in halictine bees. [source]


RAPID GROWTH RESULTS IN INCREASED SUSCEPTIBILITY TO PREDATION IN MENIDIA MENIDIA

EVOLUTION, Issue 9 2003
Stephan B. Munch
Abstract Several recent studies have demonstrated that rapid growth early in life leads to decreased physiological performance. Nearly all involved experiments over short time periods (<1 day) to control for potentially confounding effects of size. This approach, however, neglects the benefits an individual accrues by growing. The net effect of growth can only be evaluated over a longer interval in which rapidly growing individuals are allowed the time required to attain the expected benefits of large size. We used two populations of Menidia menidia with disparate intrinsic growth rates to address this issue. We compared growth and survivorship among populations subject to predation in mesocosms under ambient light and temperature conditions for a period of up to 30 days to address two questions: Do the growth rates of fish in these populations respond differently to the presence of predators? Is the previously demonstrated survival cost of growth counterbalanced by the benefits of increased size? We found that growth was insensitive to predation risk: neither population appeared to modify growth rates in response to predation levels. Moreover, the fast-growing population suffered significantly higher mortality throughout the trials despite being 40% larger than the slow-growing population at the experiment's end. These results confirm that the costs of rapid growth extend over prolonged intervals and are not ameliorated merely by the attainment of large size. [source]


Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2003
Thomas Sendor
Summary 1Life-history theory assumes increased mortality at certain stages such as hibernation. However, seasonal variation of survival rates of hibernating mammals has rarely been estimated. In this study, apparent survival of pipistrelle bats (Pipistrellus pipistrellus) hibernating and performing summer swarming at a large hibernaculum (Marburg Castle, Hesse, Germany), was modelled using seasonal (summer/winter) capture,recapture data for the years 1996,2000. The spring survival interval includes the period of arousal at the end of hibernation and therefore validly measures survival associated with hibernation. 2In five summers and four winters, 15 839 bats were captured and released (13 082 individuals) and 3403 recaptures recorded. Analysis was complicated by transience and trap-dependence. Recapture rates varied seasonally and by group. The autumnal survival estimates were negatively biased due to transience effects that could not be taken into account. 3Survival could be modelled using two age-classes, with reduced first-year juvenile survival. The age effect persisted over the first autumn and spring. There was virtually no evidence for sex-specific survival rates; male and female survival were found to be almost equal. In the best-fitting models, survival rates varied over time and differed among sexes and age-classes by a constant amount. Between years, there was only a small variation in spring survival, which could not be explained by winter severity. 4Adult spring survival was surprisingly high, averaging 0·892 (= 0·028). No evidence for increased mortality during hibernation could be found. This contradicted the expectation of reduced over-winter survival due to depleted fat reserves at the end of hibernation. Thus, hibernation does apparently not entail a survival cost for the pipistrelle bat. Rough estimates of annual adult survival averaged 0·799 ( = 0·051), which considerably exceeds previous estimates; annual juvenile survival was estimated at 0·527 ( = 0·095). Hence, previous studies have substantially underestimated pipistrelle bat survival. Possible consequences of these findings for various aspects of life histories are discussed. [source]


Evolution of the distribution of dispersal distance under distance-dependent cost of dispersal

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2002
F. Rousset
Abstract We analyse the evolution of the distribution of dispersal distances in a stable and homogeneous environment in one- and two-dimensional habitats. In this model, dispersal evolves to avoid the competition between relatives although some cost might be associated with this behaviour. The evolutionarily stable dispersal distribution is characterized by an equilibration of the fitness gains among all the different dispersal distances. This cost-benefit argument has heuristic value and facilitates the comprehension of results obtained numerically. In particular, it explains why some minimal or maximal probability of dispersal may evolve at intermediate distances when the cost of dispersal function is an increasing function of distance. We also show that kin selection may favour long range dispersal even if the survival cost of dispersal is very high, provided the survival probability does not vanish at long distances. [source]


Fetal programming: Adaptive life-history tactics or making the best of a bad start?

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2005
James Holland Jones
Fetal programming is an ontogenetic phenomenon of increasing interest to human biologists. Because the downstream consequences of fetal programming have clear impacts on specific life-history traits (e.g., age at first reproduction and the general age-pattern of reproductive investments), a number of authors have raised the question of the adaptive significance of fetal programming. In this paper, I review in some detail several classical models in life-history theory and discuss their relative merits and weaknesses for human biology. I suggest that an adequate model of human life-history evolution must account for the highly structured nature of the human life cycle, with its late age at first reproduction, large degree of iteroparity, highly overlapping generations, and extensive, post-weaning parental investment. I further suggest that an understanding of stochastic demography is essential for answering the question of the adaptive significance of fetal programming, and specifically the finding of low birth weight on smaller adult body size and earlier age at first reproduction. Using a stage-structured stochastic population model, I show that the downstream consequences of early deprivation may be "making the best of a bad start" rather than an adaptation per se. When a high-investment strategy entails survival costs, the alternate strategy of early reproduction with relatively low investment may have higher fitness than trying to play the high-investment strategy and failing. Am. J. Hum. Biol. 17:22,33, 2005. © 2004 Wiley-Liss, Inc. [source]