Surface Motion (surface + motion)

Distribution by Scientific Domains


Selected Abstracts


The role of soil in the collapse of 18 piers of Hanshin Expressway in the Kobe earthquake

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2006
George Mylonakis
Abstract An investigation is presented of the collapse of a 630 m segment (Fukae section) of the elevated Hanshin Expressway during the 1995 Kobe earthquake. The earthquake has, from a geotechnical viewpoint, been associated with extensive liquefactions, lateral soil spreading, and damage to waterfront structures. Evidence is presented that soil,structure interaction (SSI) in non-liquefied ground played a detrimental role in the seismic performance of this major structure. The bridge consisted of single circular concrete piers monolithically connected to a concrete deck, founded on groups of 17 piles in layers of loose to dense sands and moderate to stiff clays. There were 18 spans in total, all of which suffered a spectacular pier failure and transverse overturning. Several factors associated with poor structural design have already been identified. The scope of this work is to extend the previous studies by investigating the role of soil in the collapse. The following issues are examined: (1) seismological and geotechnical information pertaining to the site; (2) free-field soil response; (3) response of foundation-superstructure system; (4) evaluation of results against earlier studies that did not consider SSI. Results indicate that the role of soil in the collapse was multiple: First, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure. Second, the compliance of soil and foundation altered the vibrational characteristics of the bridge and moved it to a region of stronger response. Third, the compliance of the foundation increased the participation of the fundamental mode of the structure, inducing stronger response. It is shown that the increase in inelastic seismic demand in the piers may have exceeded 100% in comparison with piers fixed at the base. These conclusions contradict a widespread view of an always-beneficial role of seismic SSI. Copyright © 2005 John Wiley & Sons, Ltd. [source]


An investigation of tuned liquid dampers equipped with damping screens under 2D excitation

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2005
M. J. Tait
Abstract This paper reports on the results of a study conducted on tanks partially filled with water, representing tuned liquid dampers (TLD), subjected to both 1D and 2D horizontal excitations. The sloshing response of the water in the tank is characterized by the free surface motion, the resulting base shear force, and evaluation of the energy dissipated by the sloshing water. A 1D non-linear flow model capable of simulating a TLD equipped with damping screens is employed to model a 2D TLD. Application of this particular model requires the assumption that the response is decoupled and can be treated as the summation of two independent 1D TLDs. Results from the non-linear flow model are compared with the 2D experimental shake table test results leading to a validation of the decoupled response assumption. This attractive decoupled response property allows square and rectangular tanks to be used as 2D TLDs, which can simultaneously reduce the dynamic response of a structure in two perpendicular modes of vibration. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Two-dimensional transonic aeroservoelastic computations in the time domain

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2001
L. Djayapertapa
Abstract A computational method to perform transonic aeroelastic and aeroservoelastic calculations in the time domain is presented, and used to predict stability (flutter) boundaries of 2-D wing sections. The aerodynamic model is a cell-centred finite-volume unsteady Euler solver, which uses an efficient implicit time-stepping scheme and structured moving grids. The aerodynamic equations are coupled with the structural equations of motion, which are derived from a typical wing section model. A control law is implemented within the aeroelastic solver to investigate active means of flutter suppression via control surface motion. Comparisons of open- and closed-loop calculations show that the control law can successfully suppress the flutter and results in an increase of up to 19 per cent in the allowable speed index. The effect of structural non-linearity, in the form of hinge axis backlash is also investigated. The effect is found to be strongly destabilizing, but the control law is shown to still alleviate the destabilizing effect. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Seismic response of slopes subjected to incident SV wave by an improved boundary element approach

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2007
Behrouz Gatmiri
Abstract In this paper, an improved boundary element approach for 2D elastodynamics in time-domain is presented. This approach consists in the truncation of time integrations, based on the rapid decrease of the fundamental solutions with time. It is shown that an important reduction of the computation time as well as the storage requirement can be achieved. Moreover, for half-plane problems, the size of boundary element (BE) meshes and the computation time can be significantly reduced. The proposed approach is used to study the seismic response of slopes subjected to incident SV waves. It is found that large amplifications take place on the upper surface close to the slope, while attenuations are produced on the lower surface. The results also show that surface motions become very complex when the incident wavelength is comparable with the size of the slope or when the slope is steep. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Can variable meridional flows lead to false exoplanet detections?

ASTRONOMISCHE NACHRICHTEN, Issue 10 2007
J.M. Beckers
Abstract The search for habitable exoplanets centers on planets with Earth-like conditions around late type stars. Radial velocity searches for these planets require precisions of 1 m/s and better. That is now being achieved. At these precisions stellar surface motions might lead to false detections. Of particular interest are variable meridional flows on stellar surfaces. I review the available observations of solar surface meridional flows using both Doppler shift and local helioseismology techniques. Interpretation in terms of Doppler shifts in integrated starlight leads to estimates of the likelihood of false detections. It is unlikely that these false detections occur in the habitability zones of exoplanets. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]