Suppressor T Cells (suppressor t + cell)

Distribution by Scientific Domains

Selected Abstracts

HIV-1 impairs in vitro priming of na´ve T cells and gives rise to contact-dependent suppressor T cells

Karlhans F. Che
Abstract Priming of T cells in lymphoid tissues of HIV-infected individuals occurs in the presence of HIV-1. DC in this milieu activate T cells and disseminate HIV-1 to newly activated T cells, the outcome of which may have serious implications in the development of optimal antiviral responses. We investigated the effects of HIV-1 on DC,na´ve T-cell interactions using an allogeneic in vitro system. Our data demonstrate a dramatic decrease in the primary expansion of na´ve T cells when cultured with HIV-1-exposed DC. CD4+ and CD8+ T cells showed enhanced expression of PD-1 and TRAIL, whereas CTLA-4 expression was observed on CD4+ T cells. It is worth noting that T cells primed in the presence of HIV-1 suppressed priming of other na´ve T cells in a contact-dependent manner. We identified PD-1, CTLA-4, and TRAIL pathways as responsible for this suppresion, as blocking these negative molecules restored T-cell proliferation to a higher degree. In conclusion, the presence of HIV-1 during DC priming produced cells with inhibitory effects on T-cell activation and proliferation, i.e. suppressor T cells, a mechanism that could contribute to the enhancement of HIV-1 pathogenesis. [source]

Dendritic cells: Understanding immunogenicity

Abstract The impetus for the discovery of dendritic cells in 1972 was to understand immunogenicity, the capacity of an antigenic substance to provoke immunity. During experiments to characterize "accessory" cells that enhanced immunity, we spotted unusual stellate cells in mouse spleen. They had a distinct capacity to form and retract processes or dendrites and were named dendritic cells (DC). DC proved to be different from other cell types and to be peculiarly immunogenic when loaded with antigens. When Langerhans cells were studied, immunogenicity was found to involve two steps: antigen presentation by immature DC and maturation to elicit immunity. Antigen-bearing DC were also immunogenic in vivo and were therefore termed "nature's adjuvants". Several labs then learned to generate large numbers of DC from progenitors, which accelerated DC research. Tolerogenicity via DC, including the control of foxp3+ suppressor T cells, was recently discovered. Two areas of current research that I find intriguing are to identify mechanisms for antigen uptake and processing, and for the control of different types of immunity and tolerance. These subjects should be studied in vivo with clinically relevant antigens, so that the activities of DC can be better integrated into the prevention and treatment of disease in patients. [source]

Vaccination with myelin oligodendrocyte glycoprotein adsorbed to alum effectively protects DBA/1 mice from experimental autoimmune encephalomyelitis

Maja Wňllberg
Abstract To prevent an organism from developing autoimmunity the body limits the number of autoreactive cells through thymic negative selection and regulates their activity through induction of suppressor T cells. Development of antigen-specific therapies provides an interesting opportunity to imitate the body's own, often effective, method of protection. Our study demonstrates that DBA/1 mice could be protected from experimental autoimmune encephalomyelitis induced through injection of recombinant myelin oligodendrocyte glycoprotein (rMOG) when they were previously immunized intraperitoneally with rMOG adsorbed to aluminium hydroxide. This protection was associated with a decreased IFN-, production by rMOG-specific cells, but not a decreased proliferative response. Protection was long lasting, indicating that MOG-alum vaccination might be developed as a prophylactic therapy in multiple sclerosis. [source]

Idiotype-specific CD4+CD25+ T suppressor cells prevent, by limiting antibody diversity, the occurrence of anti-dextran antibodies crossreacting with histone H3

Christoph Specht
Abstract CD25+ suppressor T cells regulate the immune response against the type-2 "thymus independent" bacterial polysaccharide antigen ,(1,3)dextran (Dex) in BALB/c mice. These T cells, represented by the clone 178-4 Ts, restrict the Dex-specific IgG antibody repertoire such that the J558 idiotype dominates. Antibodies with other structures in the heavy-chain variable region (VH region), predominantly within the CDR3 domain, occur when the T cell control fails. This increase of antibody diversity caused by a lack of CD25+ Ts cells, e.g. in nude mice, does not result in the appearance of antibodies with enhanced affinity to the antigen Dex, but often leads to a crossreactivity with autologous proteins. Twenty-two out of sixty Dex-specific hybridomas from nude mice, but no hybridomas from euthymic mice, crossreact with a nuclear protein, as tested by ELISA. This nuclear protein was identified as histone H3. Ten of the sixty hybridomas from nude mice were sequenced and show VH sequences that deviate from the original J558 sequence. Three of these ten hybridomas crossreact with the histone H3. Adoptive transfer of CD25+ Ts cells to nude mice leads to a marked increase of antibodies carrying the original J558 idiotype within the IgG pool after immunization with Dex. Our data demonstrate a CD25+ Ts cell-mediated restriction of VH usage, which prevents the appearance of crossreactive autoantibodies. [source]

Dengue virus-specific suppressor T cells: current perspectives

Umesh C. Chaturvedi
Abstract Dengue virus was the first microorganism that was shown to induce generation of antigen-specific suppressor T (TS) cells in mice. The cascade of the three generations of TS cells (TS1, TS2, TS3) and their secretary products, the suppressor factors (SF1, SF2), was delineated. The TS pathway was proposed to be protective through inhibition of the production of enhancing antibody, which may enhance the severity of dengue disease. The currently second most favoured mechanism of severe dengue disease is the ,cytokine tsunami'. During the last decade, suppressor/regulatory T cells have been studied in greater detail using modern techniques in various diseases, including viral infections. This brief review discusses the role of dengue-specific suppressor T cells in protection and/or induction of severe dengue disease in view of our current understanding of suppressor/regulatory T cells. [source]

Control of T-cell activation by CD4+ CD25+ suppressor T cells

Ethan M. Shevach
Summary: Depletion of the minor (,10%) subpopulation of CD4+ T cells that co-expresses CD25 (interleukin (IL)-2 receptor ,-chain) by thymectomy of neonates on the third day of life or by treatment of adult CD4+ T cells with anti-CD25 and complement results in the development of organ-specific autoimmunity. Autoimmune disease can be prevented by reconstitution of the animals with CD4+ CD25+ cells. CD4+ CD25+ -mediated protection of autoimmune gastritis does not require the suppressor cytokines IL-4, IL-10, or transforming growth factor (TGF)-,. Mice that express a transgenic T-cell receptor (TCR) derived from a thymectomized newborn that recognizes the gastric parietal cell antigen H/K ATPase all develop severe autoimmune gastritis very early in life. CD4+ CD25+ T cells are also powerful suppressors of the activation of both CD4+ and CD8+ T cells in vitro. Suppression is mediated by a cell contact-dependent, cytokine-independent T,T interaction. Activation of CD4+ CD25+ via their TCR generates suppressor effector cells that are capable of non-specifically suppressing the activation of any CD4+ or CD8+ T cell. Activation of suppressor effector function is independent of co-stimulation mediated by CD28/CTLA-4 interactions with CD80/CD86. We propose that CD4+ CD25+ T cells recognize organ-specific antigens, are recruited to sites of autoimmune damage where they are activated by their target antigen, and then physically interact with autoreactive CD4+ or CD8+ effector cells to suppress the development of autoimmune disease. [source]

CD8+CD28, T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity

Raffaello Cortesini
Summary: Human CD8+CD28, suppressor T cells (Ts) are a subset of T cells generated in the course of in vitro and in vivo immunizations. Ts recognize MHC class I:peptide complexes and inhibit the reactivity of T helper cells (Th) with cognate antigen specificity. We have demonstrated for the first time that CD8+CD28, Ts represent a unique subset of regulatory cells that induces the differentiation of tolerogenic antigen-presenting cells, initiating a suppressive loop which results in the induction and spreading of Th unresponsiveness. [source]