Home About us Contact | |||
Suppression Function (suppression + function)
Selected AbstractsMicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cellsINTERNATIONAL JOURNAL OF CANCER, Issue 2 2010Wenrui Duan Abstract Restoration of p53 function in tumor cells would be an attractive strategy for lung cancer therapy because p53 mutations are found in more than 50% of lung cancers. The small molecule PRIMA-1 has been shown to restore the tumor suppression function of p53 and to induce apoptosis in human tumor cells. The mechanism of apoptosis induced by PRIMA-1 remains unclear. We investigated the effects of PRIMA-1 in apoptosis with Western immunoblot analysis, TaqMan microRNA real-time PCR, cell viability analysis and flow cytometry using human lung cancer cell lines containing mutant (H211 and H1155), wild-type (A549) or null (H1299) p53. PRIMA-1 induced massive apoptosis in the H211 and H1155 cells, but was less toxic to the A549 and H1299 cells. Western immunoblot analysis showed cleavage of PARP in H211 and H1155 cells but not in A549 and H1299 cells following treatment with PRIMA-1. In addition, p53 protein was also phosphorylated in H211 and H1155 cells. TaqMan microRNA assay showed that the expression of microRNA-34a was increased in the H211 and H1155 cells posttreatment. Knockdown microRNA-34a decreased the rate of apoptosis caused by PRIMA-1. The above results suggest that microRNA-34a is one of the important components of PRIMA-1-induced apoptotic network in the cancer cells harboring mutant p53. [source] Pro-metastasis function of TGF, mediated by the smad pathwayJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006Yibin Kang Abstract The transforming growth factor beta (TGF,) signaling pathway plays a vital role in the development and homeostasis of normal tissues. Abnormal function of this pathway contributes to the initiation and progression of cancer. Smad proteins are key signal transducers of the TGF, pathway and are essential for the growth suppression function of TGF,. Smads are bona fide tumor suppressors whose mutation, deletion, and silencing are associated with many types of human cancer. However, the involvement and functional mechanism of Smad proteins in cancer metastasis are poorly defined. Recent studies using genetically modified cancer cells and mouse tumor models have provided concrete evidence for a Smad-dependent mechanism for metastasis promotion by TGF,. Understanding the dual roles of Smad proteins in tumor initiation and progression has important implications for cancer therapeutics. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] What can humans learn from flies about adenomatous polyposis coli?BIOESSAYS, Issue 9 2002Angela I.M. Barth Somatic or inherited mutations in the adenomatous polyposis coli (APC) gene are a frequent cause of colorectal cancer in humans. APC protein has an important tumor suppression function to reduce cellular levels of the signaling protein ,-catenin and, thereby, inhibit ,-catenin and T-cell-factor-mediated gene expression. In addition, APC protein binds to microtubules in vertebrate cells and localizes to actin-rich adherens junctions in epithelial cells of the fruit fly Drosophila (Fig. 1). Very little is known, however, about the function of these cytoskeletal associations. Recently, Hamada and Bienz have described a potential role for Drosophila E-APC in cellular adhesion,1 which offers new clues to APC function in embryonic development, and potentially colorectal adenoma formation and tumor progression in humans. BioEssays 24:771,774, 2002. © 2002 Wiley Periodicals, Inc. [source] Neurofibromatosis type 1 is a disorder of dysplasia: The importance of distinguishing features, consequences, and complications,BIRTH DEFECTS RESEARCH, Issue 1 2010Vincent Michael Riccardi BACKGROUND: The disorder neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene, which influences the availability of activated Ras and the latter's control of cellular proliferation. Emphasis on this aspect of NF1 has focused attention on the tumor suppression function of NF1 and thereby displaced attention from the gene's role in initial normal tissue formation, maintenance, and repair. METHODS: Clinical and neuroimaging data systematically compiled over more than 30 years are analyzed to document the involvement of multiple organs and tissues, often with an embryonic origin. In addition, recent literature based on selective knockout mouse experiments is cited to corroborate embryonic dysplasia as an element of NF1 pathogenesis. RESULTS: Tissue dysplasia, both ab initio and as part of tissue maintenance and wound healing, is a key clinical and pathogenetic aspect of NF1 and thereby provides a rationale for differentiating the elements of NF1 into features, consequences, and complications. CONCLUSIONS: NF1 is a histogenesis control gene that also has properties that overlap with those of a tumor suppressor gene. Both its neoplastic and dysplastic manifestations become more amenable to understanding and treatment if they are differentiated at three levels,specifically, features, consequences and complications. Birth Defects Research (Part A), 2010. © 2009 Wiley-Liss, Inc. [source] The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamianaTHE PLANT JOURNAL, Issue 2 2006Jorunn I. B. Bos Summary The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a,R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure,function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions. [source] |