Successful Production (successful + production)

Distribution by Scientific Domains


Selected Abstracts


Zero Shrinkage of LTCC by Self-Constrained Sintering

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 5 2005
Torsten Rabe
Low shrinkage in x and y direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration. Therefore, zero shrinkage sintering technologies as pressure-assisted sintering and sacrificial tapes have been introduced in the low-temperature co-fired ceramics (LTCC) production by different manufacturers. Disadvantages of these methods are high costs of sintering equipment and an additional process step to remove the sacrificial tapes. In this article, newly developed self-constrained sintering methods are presented. The new technology, HeraLock®, delivers LTCC modules with a sintering shrinkage in x and y direction of less than 0.2% and with a shrinkage tolerance of ±0.02% without sacrificial layers and external pressure. Each tape is self-constrained by integration of a layer showing no shrinkage in the sintering temperature range of the LTCC. Large area metallization, integration of channels, cavities and passive electronic components are possible without waviness and camber. Self-constrained laminates are an alternative way to produce zero shrinkage LTCC. They consist of tapes sintering at different temperature intervals. Precondition for a successful production of a self-constrained LTCC laminate is the development of well-adapted material and tapes, respectively. This task is very challenging, because sintering range, high-temperature reactivity and thermal expansion coefficient have to be matched and each tape has to fulfill specific functions in the final component, which requires the tailoring of many properties as permittivity, dielectric loss, mechanical strength, and roughness. A self-constrained laminate is introduced in this article. It consists of inner tapes sintering at especially low-temperature range between 650°C and 720°C and outer tapes with an as-fired surface suitable for thin-film processes. [source]


The Influence of Solvent Properties and Functionality on the Electrospinnability of Polystyrene Nanofibers

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2006
Cattaleeya Pattamaprom
Abstract Summary: In order to produce nanometer-sized fibers at an industrial scale, not only the morphology but also the production rate of fibers is important. The effect of solvent properties and functionality on the production rate of electrospun PS nanofibers was investigated using eighteen different solvents. The solution concentration was varied between 10 and 30% w/v. Electrospinning of PS solutions was carried out at various applied voltages and tip-to-collector distances The production rate of the obtained PS nanofibers was quantified in terms of electrospinnability. We found that the chance for the resulting PS solution to be spinnable is greater for solvents with high dipole moment and low viscosity. The solvent that provided the highest electrospinnability for polystyrene was DMF and the functionalities that promoted high dipole moment and thus high spinnability were the carbonyl group and the nitrogen group with free electrons. General guidelines for choosing suitable solvents for successful production of electrospun nanofibers have also been proposed. SEM image of PS 685D at 200× magnification and the %-coverage of the fibers obtained by using DMF, chloroform, and 1,4-dioxane. [source]


Egg and larval quality, and egg fatty acid composition of Eurasian perch breeders (Perca fluviatilis) fed different dietary DHA/EPA/AA ratios

AQUACULTURE RESEARCH, Issue 9 2010
Emilie Henrotte
Abstract In Eurasian perch (Perca fluviatilis), the variability in spawning quality is a major limiting factor for successful production, especially when breeders are fed with an artificial diet. The influence of the dietary DHA/EPA/AA ratio on the egg and larval quality and on the fatty acid and lipid class composition of eggs has been investigated in perch broodstock. Two experimental diets (16% lipids) with two different DHA/EPA/AA ratios, D1 (3/2/2) and D2 (23/9/1), were compared with a natural diet consisting of cultured carp juveniles, CC (10/10/1) and with a commercial diet for salmonids, CDS (14/16/1). Percentages of fertilization and hatching were comparable between fish fed D1, D2 and CC, with the highest hatching rate observed for D1 (63.5 ± 3.8%). These diets supported better values than the CDS. Larval survival and TL50 observed after osmotic stress were higher for the D1 group, followed by larvae produced by fish fed D2 and CC. Larvae from fish fed D1, D2 and CC were significantly more robust than larvae from the CDS group. Differences were observed regarding the fatty acid (FA) profile in the eggs, which was related to the dietary FA composition. The results indicate that a ratio of 3/2/2 seemed to be effective for obtaining eggs and larvae of good quality. [source]


Growth and survival of first-feeding spotted wolffish (Anarhichas minor Olafsen) at various temperature regimes

AQUACULTURE RESEARCH, Issue 14 2002
Tove K Hansen
Abstract In order to define temperature regimes that could benefit successful production of spotted wolffish (Anarhichas minor) juveniles, experiments with offspring from two different females were carried out. The larvae were fed a new formulated feed or a commercial start-feed for marine fish, both of which have given high survival rates. In the first experiment newly hatched larvae were fed at constant 6 °C, 8 °C, 10 °C and 12 °C as well as at ambient seawater temperature (2.9,4.5 °C) during 63 days. High survival, 90% to 96%, was registered at ambient and most constant temperature regimes, whereas in the 12 °C groups survival was reduced to 80%. Growth rate (SGR) was very low, 1.8% day,1, at the low ambient temperatures. Growth rate was positively correlated with temperature and varied between 3.1% day,1 to 4.7% day,1, from 6 °C to 12 °C. In the second experiment, set up to include potential detrimental temperatures and study beneficial effects of a more restricted, elevated first-feeding temperature regime, the larvae were fed at constant 8 °C, 10 °C, 12 °C, 14 °C and 16 °C until 30 days post hatch, followed by constant 8 °C for the next 33 days. In this experiment, low survival, 25% and 2.0%, was registered at 63 days post hatch when larvae were reared initially at 14 °C and 16 °C respectively. The survival of the larvae at the other temperature regimes varied from 47% to 64%, highest survival rate (64%) was found at 8 °C. The lowest specific growth rate, 2.6% day,1, was noted in the 16 °C group. At constant 8 °C to 14 °C (regulated to 8 °C), the SGR varied from 4.45% day,1 to 5.13% day,1. The larvae grew faster in the experiment when initially comparable temperatures (8 °C, 10 °C and 12 °C) were regulated to constant 8 °C after 30 days compared with the first experiment where feeding was carried out at the same constant temperatures (8 °C, 10 °C and 12 °C) during the whole experimental period. [source]


High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2005
I. Hazemann
Neutron diffraction data have been collected to 2.2,Å resolution from a small (0.15,mm3) crystal of perdeuterated human aldose reductase (h-AR; MW = 36,kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo,keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR,coenzyme NADPH,selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase [h-AR(D)], subsequent crystallization of the ternary complex h-AR(D),NADPH,IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15,mm3 are reported. Neutron data were recorded to 2,Å resolution, with subsequent data analysis using data to 2.2,Å. This is the first fully deuterated enzyme of this size (36,kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples. [source]


Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes,

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009
James A. Williams
Abstract DNA vaccines have tremendous potential for rapid deployment in pandemic applications, wherein a new antigen is "plugged" into a validated vector, and rapidly produced in a validated, fermentation,purification process. For this application, it is essential that the vector and fermentation process function with a variety of different antigen genes. However, many antigen genes are unpredictably "toxic" or otherwise low yielding in standard fermentation processes. We report cell bank and fermentation process unit operation innovations that reduce plasmid-mediated metabolic burden, enabling successful production of previously known toxic influenza hemagglutinin antigen genes. These processes, combined with vector backbone modifications, doubled fermentation productivity compared to existing high copy vectors, such as pVAX1 and gWiz, resulting in high plasmid yields (up to 2,220 mg/L, 5% of total dry cell weight) even with previously identified toxic or poor producing inserts. Biotechnol. Bioeng. 2009;103: 1129,1143. © 2009 Wiley Periodicals, Inc. [source]


Editorial: The CVD Team

CHEMICAL VAPOR DEPOSITION, Issue 1 2006
L. Hitchman
Journal publication is rather like an orchestral performance. Each section must function well, both independently and as part of the ensemble, in order to guarantee a successful production. The Editor conducts a brief overview of the team behind CVD and the parts they play in bringing the journal to the reader. [source]