Home About us Contact | |||
Successful Isolation (successful + isolation)
Selected AbstractsIsolation and partial purification of the Saccharomyces cerevisiae cytokinetic apparatus,CYTOSKELETON, Issue 1 2010Brian A. Young Abstract Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested,actin, myosin heavy and light chain, and IQGAP,as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis. © 2009 Wiley-Liss, Inc. [source] Sinus Node Injury as a Complication of Superior Vena Cava IsolationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2005MARY GERTRUDE ONG M.D. We report a case with SVC ectopy initiating AF; the origin and breakout point of the sinus node was inside the SVC, and the SVC ectopy was conducted through the same path as the sinus node activation to depolarize the right atrium. Injury to the sinus node happened after successful isolation of SVC. [source] Isolation and characterization of microsatellite markers from the marine isopods Serolis paradoxa and Septemserolis septemcarinata (Crustacea: Peracarida)MOLECULAR ECOLOGY RESOURCES, Issue 4 2008FLORIAN LEESE Abstract This study reports the successful isolation of highly informative microsatellite marker sets for two marine serolid isopod species. For Serolis paradoxa (Fabricius, 1775), 13, and for Septemserolis septemcarinata (Miers, 1875), eight polymorphic microsatellite markers were isolated using the reporter genome enrichment protocol. The number of alleles per locus (NA) and the observed heterozygosity (HO) encompass a wide range of variation within S. paradoxa (NA 3,31, HO 6,89%) and S. septemcarinata (NA 2,18, HO 9,94%). The suitability of the newly isolated markers for population genetic studies is evaluated. [source] A method for the isolation of glomerular and tubulointerstitial endothelial cells and a comparison of characteristics with the human umbilical vein endothelial cell modelNEPHROLOGY, Issue 4 2004STELLA MCGINN SUMMARY: Background: Abnormalities in the structure and function of glomerular endothelial cells play a pivotal role in the development of progressive renal disease. The vascular abnormalities observed in the renal tubulointerstitium, however, correlate more strongly with progressive renal failure. Therefore, the successful isolation and culture of human renal microvascular endothelial cells from both the glomerulus and tubulointerstitium are paramount in studying renal disease models. Methods and Results: This study describes a simple and reproducible method for the isolation of human tubulointerstitial and glomerular endothelial cells by using immunomagnetic separation with anti-platelet endothelial-cell adhesion (anti-PECAM-1) Dyna beads, followed by manual weeding of mesangial and fibroblast contamination. No significant changes in morphological or immunohistochemical characteristics were observed up to passage two of culture. The in vitro characteristics of the endothelial cells were compared to the renal cortical endothelial cells in vivo and the standard human umbilical vein endothelial cell model (HUVECs). Similar to HUVECs, both populations of renal microvascular endothelial cells had a classical cobblestone appearance, stained positively for von Willebrand Factor and PECAM-1 and negatively for antifibroblast surface antigen and anticytokeratin. Differences in the expression of von Willebrand Factor, Wiebel Palade bodies and Flk-1 staining were observed between glomerular and tubulointerstitial endothelial cells. These immunohistochemical characteristics suggested that tubulointerstital endothelial cells were more closely aligned to HUVECS than to the glomerular endothelial cells. This observation indicated that HUVECs may be a suitable model for determining the tubulointerstitial endothelial response to systemic injury. Conclusion: In conclusion, a unique and novel method for the differential isolation of both glomerular and tubulointerstitial endothelial cells has been developed. Significantly, characterization of these populations suggests a role for HUVECS in the study of renal tubulointerstitial disease. [source] Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifoliaNEW PHYTOLOGIST, Issue 3 2007Hai-Yong Qu Summary ,,The pollen tube has been widely used to study the mechanisms underlying polarized tip growth in plants. A steep tip-to-base gradient of free cytosolic calcium ([Ca2+]cyt) is essential for pollen-tube growth. Local Ca2+ influx mediated by Ca2+ -permeable channels plays a key role in maintaining this [Ca2+]cyt gradient. ,,Here, we developed a protocol for successful isolation of spheroplasts from pollen tubes of Pyrus pyrifolia and identified a hyperpolarization-activated cation channel using the patch-clamp technique. ,,We showed that the cation channel conductance displayed a strong selectivity for divalent cations, with a relative permeability sequence of barium (Ba2+) , Ca2+ > magnesium (Mg2+) > strontium (Sr2+) > manganese (Mn2+). This channel conductance was selective for Ca2+ over chlorine (Cl,) (relative permeability PCa/PCl = 14 in 10 mm extracellular Ca2+). We also showed that the channel was inhibited by the Ca2+ channel blockers lanthanum (La3+) and gadolinium (Gd3+). Furthermore, channel activity depended on extracellular pH and pollen viability. ,,We propose that the Ca2+ -permeable channel is likely to play a role in mediating Ca2+ influx into the growing pollen tubes to maintain the [Ca2+]cyt gradient. [source] Studies on amoebae and cysts associated with the isolation of Spongospora subterranea f.sp. subterranea in vitroPLANT PATHOLOGY, Issue 4 2001X.-S. Qu New evidence is presented to support the contention that the amoeba/cyst colonies isolated from surface-sterilized Spongospora subterranea f.sp. subterranea -infected potato tubers and spore balls have a saprophytic phase but are contaminants and not S. subterranea. Amoebae isolated from infected tissues and spore balls formed colonies associated with bacteria on 1% water agar at 18°C and encysted after 5,7 days. These cysts were morphologically distinct from the resting spores of S. subterranea and were formed singly or in a layer, unlike the spore ball (cystosorus) of S. subterranea. Amoebae, cysts and mixtures of amoebae and cysts in primary, secondary and tertiary subcultures failed to infect tomato roots. PCR amplification of DNA from amoebae, cysts and spore balls using the S. subterranea -specific primer pair SsF/R generated a 434-bp product from S. subterranea spore balls only and not from amoebae or cysts. When an amoeba/cyst-specific primer pair AmF/R was designed and used for PCR amplification, a single 411-bp product was generated from DNA of amoebae and cysts, but not from DNA of S. subterranea spore balls. These results are discussed in relation to earlier reports claiming the successful isolation of S. subterranea and other plasmodiophorids in vitro. [source] |