Home About us Contact | |||
Successful Crystallization (successful + crystallization)
Selected AbstractsThe Corynebacterium glutamicum aconitase repressor: scratching around for crystalsACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2010Javier García-Nafría Imperfections on the surfaces of crystallization containers are known to influence crystal formation and are thought to do so by helping to overcome the nucleation barrier. The intentional creation of imperfections has been widely applied to induce crystallization of small molecules, but has not been reported for protein crystallization. Here, the crystallization and preliminary X-ray analysis of the TetR-type aconitase repressor are reported. This regulator was the first transcription factor to be identified in the regulation of the tricarboxylic acid cycle in Corynebacterium glutamicum, an organism that is of special industrial interest and is an emerging model organism for Corynebacterineae. Successful crystallization involved introducing manual scratches on the surface of standard commercial plates, which led to a substantial improvement in crystal nucleation and quality. [source] A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reductionPROTEIN SCIENCE, Issue 5 2010Andrea F. Moon Abstract Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. [source] Structure at 1.5,Å resolution of cytochrome c552 with its flexible linker segment, a membrane-anchored protein from Paracoccus denitrificansACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2010Chitra Rajendran Electron transfer (ET) between the large membrane-integral redox complexes in the terminal part of the respiratory chain is mediated either by a soluble c -type cytochrome, as in mitochondria, or by a membrane-anchored cytochrome c, as described for the ET chain of the bacterium Paracoccus denitrificans. Here, the structure of cytochrome c552 from P. denitrificans with the linker segment that attaches the globular domain to the membrane anchor is presented. Cytochrome c552 including the linker segment was crystallized and its structure was determined by molecular replacement. The structural features provide functionally important information. The prediction of the flexibility of the linker region [Berry & Trumpower (1985), J. Biol. Chem.260, 2458,2467] was confirmed by our crystal structure. The N-terminal region from residues 13 to 31 is characterized by poor electron density, which is compatible with high mobility of this region. This result indicates that this region is highly flexible, which is functionally important for this protein to shuttle electrons between complexes III and IV in the respiratory chain. Zinc present in the crystallization buffer played a key role in the successful crystallization of this protein. It provided rigidity to the long negatively charged flexible loop by coordinating negatively charged residues from two different molecules and by enhancing the crystal contacts. [source] The absence of inorganic salt is required for the crystallization of the complete oligomerization domain of Salmonella typhimurium histone-like nucleoid-structuring proteinACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010Paul G. Leonard The histone-like nucleoid-structuring protein (H-NS) plays an important role in both DNA packaging and global gene regulation in enterobacteria. Self-association of the N-terminal domain results in polydisperse oligomers that are critical to the function of the protein. This heterogeneity in oligomer size has so far prevented structure determination of the complete oligomerization domain by NMR or X-ray crystallography. In the absence of inorganic salt, the H-NS oligomerization domain is predominantly restricted to an equilibrium between a homodimer and homotetramer, allowing a protein solution to be prepared that is sufficiently homogeneous for successful crystallization. Crystallization was achieved by tailoring the conditions screened to those identified as minimizing the potential disruption of protein-solution homogeneity. This finding provides a significant step towards resolving the structure of this important prokaryotic protein. [source] |