Substrate Pools (substrate + pool)

Distribution by Scientific Domains


Selected Abstracts


DOC leaching from a coniferous forest floor: modeling a manipulation experiment,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2005
Edward Tipping
Abstract The DyDOC model simulates the C dynamics of forest soils, including the production and transport of dissolved organic matter (DOM), on the basis of soil hydrology, metabolic processes, and sorption reactions. The model recognizes three main pools of soil C: litter, substrate (an intermediate transformation product), and humic substances. The model was used to simulate the behavior of C in the O horizon of soil under a Norway spruce stand at Asa, Sweden, that had been subjected to experimental manipulations (addition and removal) of above-ground litter inputs and to removal of the Oi and Oe layers. Initially, the model was calibrated using results for the control plots and was able to reproduce the observed total soil C pool and 14C content, DOC flux and DO14C content, and the pool of litter C, together with the assumed content of C in humic substances (20% of the total soil C), and the assumed distribution of DOC between hydrophilic and hydrophobic fractions. The constant describing DOC exchange between micro- and macropores was estimated from short-term variations in DOC concentration. When the calibrated model was used to predict the effects of litter and soil manipulations, it underestimated the additional DOC export (up to 33%) caused by litter addition, and underestimated the 22% reduction in DOC export caused by litter withdrawal. Therefore, an additional metabolic process, the direct conversion of litter to DOC, was added to the model. The addition of this process permitted reasonably accurate simulation of the results of the manipulation experiments, without affecting the goodness-of-fit in the model calibration. The results suggest that, under normal conditions, DOC exported from the Asa forest floor is a mixture of compounds derived from soil C pools with a range of residence times. Approximately equal amounts come from the litter pool (turnover time 4.6 yr), the substrate pool (26 yr), and the humic-substances pool (36 yr). [source]


Trigger Factor and DnaK possess overlapping substrate pools and binding specificities

MOLECULAR MICROBIOLOGY, Issue 5 2003
Elke Deuerling
Summary Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, ,tig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37°C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted ,tig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities. [source]


Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants

THE PLANT JOURNAL, Issue 2 2007
Christine Lai
Abstract Wax biosynthetic pathways proceed via the elongation of 16:0 acyl-CoA to very long-chain fatty acids (VLCFA), and by further modifications that include reduction to primary alcohols and formation of alkyl esters. We have analyzed the alkyl esters in the stem wax of ten cer mutants of Arabidopsis thaliana together with the corresponding wild types. Alkyl esters with chain lengths between C38 and C52 were identified, and the levels of esters ranged from 0.15 µg cm,2 in Wassilewskija (WS) to 1.20 µg cm,2 in cer2. Esters with even numbers of carbons prevailed, with C42, C44 and C46 favoured in the wild types, a predominance of C42 in cer2 and cer6 mutants, and a relative shift towards C46 in cer3 and cer23 mutants. The esters of all mutants and wild types were dominated by 16:0 acyl moieties, whereas the chain lengths of esterified alcohols were between C20 and C32. The alkyl chain-length distributions of the wild-type esters had a maximum for C28 alcohol, similar to the free alcohols accompanying them in the wax mixtures. The esterified alcohols of cer2, cer6 and cer9 had largely increased levels of C26 alcohol, closely matching the patterns of the corresponding free alcohols and, therefore, differing drastically from the corresponding wild type. In contrast, cer1, cer3, cer10, cer13 and cer22 showed ester alcohol patterns with increased levels of C30, only partially following the shift in chain lengths of the free alcohols in stem wax. These results provide information on the composition of substrate pools and/or the specificity of the ester synthase involved in wax ester formation. We conclude that alcohol levels at the site of biosynthesis are mainly limiting the ester formation in the Arabidopsis wild-type epidermis. [source]


Substrate oxidation and retention in pigs and poultry

ANIMAL SCIENCE JOURNAL, Issue 2 2002
André CHWALIBOG
ABSTRACT A model combining data from gas exchange measurements with nutrient balances, demonstrating energy transfer between the pools of protein, carbohydrate and fat and their partition in the body, is described. Data from energy metabolism experiments with growing pigs and laying hens is incorporated into the model in order to illustrate methods of calculations and interpretations of the model. The experiments with pigs were carried out with growing pigs (20,100 kg) measured alternately on high (ad libitum) and low (near maintenance) feed levels on diets with low or high fat concentration. When energy intake from digested carbohydrate covered the requirements for growth, heat from oxidation of carbohydrate contributed 85,90% to the total heat production, while there was no net oxidation of fat. When the intake of digested carbohydrate was not sufficient to cover requirements, fat was mobilized from the body and oxidized. Energy from oxidation of carbohydrate was in all measurements below the energy in the carbohydrate pool, indicating transfer of energy from carbohydrate to fat metabolism in the process of de novo lipogeneis. The experiments with hens were carried out with 62 hens during the laying period from 26 to 47 weeks of age. The hens originated from two strains (A and B); they were kept in battery cages either individually or 3 hens/cage and fed ad libitum with an identical commercial diet. The partition of the protein pool between oxidation and retention was not influenced by the housing system. However, the genetic origin of hens effected protein utilization with relatively lower oxidation and higher retention in Strain B. The main part of the carbohydrate pool was oxidized (45,60%), but the hens kept individually oxidized more carbohydrate than those kept 3 hens/cage. Further, there were significant differences between the strains. Generally, about half of the fat pool originated from de novo lipogenesis from carbohydrate, indicating the importance of this process for fat retention in eggs. Fat oxidation depended on the energy supply from carbohydrate, hence with higher use of carbohydrate for oxidation in Strain B less fat was oxidized and more was used for fat synthesis. The presented results indicate that by combining results from gas exchange measurements with nitrogen and energy balances it is possible to evaluate the contribution of nutrients to the oxidative processes and the energy transfer between substrate pools. [source]