Substrate pH (substrate + ph)

Distribution by Scientific Domains


Selected Abstracts


The Circumpolar Arctic vegetation map

JOURNAL OF VEGETATION SCIENCE, Issue 3 2005
Donald A. Walker
Abstract. Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 × 106 km2), about 5.05 × 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. [source]


Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization

NEW PHYTOLOGIST, Issue 1 2002
Ingrid M. Van Aarle
Summary ,,To test the response of arbuscular mycorrhizal (AM) fungi to a difference in soil pH, the extraradical mycelium of Scutellospora calospora or Glomus intraradices, in association with Plantago lanceolata, was exposed to two different pH treatments, while the root substrate pH was left unchanged. ,,Seedlings of P. lanceolata, colonized by one or other of the fungal symbionts, and nonmycorrhizal controls, were grown in mesh bags placed in pots containing pH-buffered sand (pH around 5 or 6). The systems were harvested at approximately 2-wk intervals between 20 and 80 d. ,,Both fungi formed more extraradical mycelium at the higher pH. Glomus intraradices formed almost no detectable extraradical mycelium at lower pH. The extraradical mycelium of S. calospora had higher acid phosphatase activity than that of G. intraradices. Total AM root colonization decreased for both fungi at the higher pH, and high pH also reduced arbuscule and vesicle formation in G. intraradices. ,,In conclusion, soil pH influences AM root colonization as well as the growth and phosphatase activities of extraradical mycelium, although the two fungi responded differently. [source]


Packed Bed Column Fermenter and Kinetic Modeling for Upgrading the Nutritional Quality of Coffee Husk in Solid-State Fermentation

BIOTECHNOLOGY PROGRESS, Issue 6 2001
Débora Brand
Studies were carried out to evaluate solid-state fermentation (SSF) for the upgradation of the nutritional quality of coffee husk by degrading the caffeine and tannins present in it. SSF was carried out by Aspergillus niger LPBx in a glass column fermenter using factorial design experiments and surface response methodology to optimize bioprocess parameters such as the substrate pH and moisture content and aeration rate. The first factorial design showed that the moisture content of the substrate and aeration rate were significant factors for the degradation of toxic compounds, which was confirmed by the second factorial design too. The kinetic study showed that the degradation of toxic compounds was related to the development of the mold and its respiration and also to the consumption of the reducing sugars present in coffee husk. From the values obtained experimentally for the oxygen uptake rate and CO2 evolved, the system determined a biomass yield (Yx/o) of 3.811 (g of biomass)ˇ(g of consumed O2),1 and a maintenance coefficient (m) of 0.0031 (g of consumed O2)ˇ(g biomass of biomass),1ˇh,1. The best results on the degradation of caffeine (90%) and tannins (57%) were achieved when SSF was carried out with a 30 mLˇmin,1 aeration rate using coffee husk having a 55% initial moisture content. The inoculation rate did not affect the metabolization of the toxic compounds by the fungal culture. After SSF, the protein content of the husk was increased to 10.6%, which was more than double that of the unfermented husk (5.2%). [source]