Substrate Geometry (substrate + geometry)

Distribution by Scientific Domains


Selected Abstracts


Effects of substrate geometry on growth cone behavior and axon branching

DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2006
Ginger S. Withers
Abstract At the leading edge of a growing axon, the growth cone determines the path the axon takes and also plays a role in the formation of branches, decisions that are regulated by a complex array of chemical signals. Here, we used microfabrication technology to determine whether differences in substrate geometry, independent of changes in substrate chemistry, can modulate growth cone motility and branching, by patterning a polylysine grid of narrow (2 or 5 ,m wide) intersecting lines. The shape of the intersections varied from circular nodes 15 ,m in diameter to simple crossed lines (nodeless intersections). Time-lapse recordings of cultured hippocampal neurons showed that simple variations in substrate geometry changed growth cone shape, and altered the rate of growth and the probability of branching. When crossing onto a node intersection the growth cone paused, often for hours, and microtubules appeared to defasciculate. Once beyond the node, filopodia and lamellipodia persisted at that site, sometimes forming a collateral branch. At nodeless intersections, the growth cone passed through with minimal hesitation, often becoming divided into separate areas of motility that led to the growth of separate branches. When several lines intersected at a common point, growth cones sometimes split into several subdivisions, resulting in the emergence of as many as five branches. Such experiments revealed an intrinsic preference for branches to form at angles less than 90°. These data show that simple changes in the geometry of a chemically homogeneous substrate are detected by the growth cone and can regulate axonal growth and the formation of branches. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 1183,1194, 2006 [source]


Flow-substrate interactions create and mediate leaf litter resource patches in streams

FRESHWATER BIOLOGY, Issue 3 2006
TRENT M. HOOVER
Summary 1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second-order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (,reference locations'). Channel features (such as water depth) and substrate variables (including stone height, stone height-to-width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high-angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions. [source]


A General Approach to the Synthesis of ,2 -Amino Acid Derivatives via Highly Efficient Catalytic Asymmetric Hydrogenation of ,-Aminomethylacrylates

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2010
Yujuan Guo
Abstract A new strategy was developed for the synthesis of a valuable class of ,-aminomethylacrylates via the Baylis,Hillman reaction of different aldehydes with methyl acrylate followed by acetylation of the resulting allylic alcohols and SN2,-type amination of the allylic acetates. Asymmetric hydrogenation of these diverse olefinic precursors using rhodium(Et-Duphos) catalysts provided the corresponding ,2 -amino acid derivatives with excellent enantioselectivities and exceedingly high reactivities (up to >99.5% ee and S/C=10,000). The first hydrogenation of (Z)-configurated substrates was studied for the synthesis of ,2 -amino acid derivatives. The high influence of the substrate geometry and steric hindrance on the reactivity and enantioselectivity was also disclosed for this reaction. This protocol provides a highly practical, facile and scalable method for the preparation of optically pure ,2 -amino acids and their derivatives under mild reaction conditions. [source]