Substrate Flux (substrate + flux)

Distribution by Scientific Domains


Selected Abstracts


Computer programs for estimating substrate flux into steady-state biofilms from pseudoanalytical solutions

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 1 2002
Chetan T. Goudar
Abstract Fixed-film processes employing microorganisms attached to an inert surface (biofilms) are widely used for biological treatment of municipal and industrial wastewater. For optimal design and analysis of these processes, mathematical models are necessary that describe the dynamics of contaminant transport within these biofilms and the associated contaminant utilization by the microorganisms. However, these governing equations that typically involve Fickian diffusion for contaminant transport and Monod kinetics for contaminant utilization are inherently nonlinear and have no closed form solutions except under special conditions. This can restrict their use in the classroom as cumbersome numerical techniques must be used for their solution. This problem is well documented in the literature and several authors have presented pseudoanalytical solutions that replace numerical solutions with algebraic equations. In the present study, we present pseudoanalytical solution-based computer programs for estimating substrate flux and biofilm thickness for a steady-state biofilm. Depending upon the intended end use, these programs can either partially or totally automate the solution process. In the partial automation mode, they can serve to enhance student understanding of important concepts related to steady-state biofilms, while complete automation can help bring more challenging and realistic problems associated with steady-state biofilms into the classroom. The programs have been tested on MATLAB version 5.0 and are available as freeware for educational purposes. © 2002 Wiley Periodicals, Inc. Comput Appl Eng Educ 10: 26,32, 2002; Published online in Wiley InterScience (www.interscience.wiley.com.); DOI 10.1002/cae.10017 [source]


Real-Time Monitoring of Mass-Transport-Related Enzymatic Reaction Kinetics in a Nanochannel-Array Reactor

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2010
Su-Juan Li
Abstract To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50,,L,min,1), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis,Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis. [source]


The coupling of biological iron cycling and mineral weathering during saprolite formation, Luquillo Mountains, Puerto Rico

GEOBIOLOGY, Issue 4 2005
H. L. BUSS
ABSTRACT Corestones of quartz diorite bedrock in the Rio Icacos watershed in Puerto Rico weather spheroidally to form concentric sets of partially weathered rock layers (referred to here as rindlets) that slowly transform to saprolite. The rindlet zone (0.2,2 m thick) is overlain by saprolite (2,8 m) topped by soil (0.5,1 m). With the objective of understanding interactions between weathering, substrate availability, and resident micro-organisms, we made geochemical and microbiological measurements as a function of depth in 5 m of regolith (soil + saprolite). We employed direct microscopic counting of total cell densities; enumeration of culturable aerobic heterotrophs; extraction of microbial DNA for yield calculations; and biochemical tests for iron-oxidizing bacteria. Total cell densities, which ranged from 2.5 × 106 to 1.6 × 1010 g,1 regolith, were higher than 108 g,1 at three depths: in the upper 1 m, at 2.1 m, and between 3.7 and 4.9 m, just above the rindlet zone. High proportions of inactive or unculturable cells were indicated throughout the profile by very low percentages of culturable heterotrophs (0.0004% to 0.02% of total cell densities). The observed increases in total and culturable cells and DNA yields at lower depths were not correlated with organic carbon or total iron but were correlated with moisture and HCl-extractable iron. Biochemical tests for aerobic iron-oxidizers were also positive at 0.15,0.6 m, at 2.1,2.4 m, and at 4.9 m depths. To interpret microbial populations within the context of weathering reactions, we developed a model for estimating growth rates of lithoautotrophs and heterotrophs based on measured substrate fluxes. The calculations and observations are consistent with a model wherein electron donor flux driving bacterial growth at the saprolite,bedrock interface is dominated by Fe(II) and where autotrophic iron-oxidizing bacteria support the heterotrophic population and contribute to bedrock disaggregation and saprolite formation. [source]


Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
Lutz Wittenmayer
Abstract Environmental stresses are one of the most limiting factors in agricultural productivity. A large portion of the annual crop yield is lost to pathogens (biotic stress) or the detrimental effects of abiotic-stress conditions. There are numerous reports about chemical characterization of quantitatively significant substrate fluxes in plant responses to stress factors in the root-rhizosphere system, e.g., nutrient mobilization, heavy-metal and aluminum immobilization, or establishment of plant-growth-promoting rhizobacteria (PGPR) by exudation of organic anions, phytosiderophores, or carbohydrates into the soil, respectively. The hormonal regulation of these responses is not well understood. This paper highlights this complex process, stressing the involvement of phytohormones in plant responses to drought and phosphorus deficiency as examples. Beside ethylene, abscisic acid (ABA) plays an important role in drought-stress adaptation of plants. This hormone causes morphological and chemical changes in plants, ensuring plant survival under water-limited conditions. For example, ABA induces stomata closure, reduction in leaf surface, and increase in root : shoot ratio and, thus, reduction in transpiration and increase in soil volume for water uptake. Furthermore, it supports water uptake in soil with decreasing water potential by osmotic adjustment. Suitability of hormonal parameters in the selection for improving stress resistance is discussed. Auxins, ethylene, and cytokinins are involved in morphological adaption processes to phosphorus (P) deficiency (increase in root surface, e.g., by the formation of more dense root hairs or cluster roots). Furthermore, indole-3-acetic acid increases root exudation for direct and indirect phosphorus mobilization in soil. Nevertheless, the direct use of the trait "hormone content" of a particular plant organ or tissue, for example the use of the drought-stress-induced ABA content of detached leaves in plant breeding for drought-stress-resistant crops, seems to be questionable, because this procedure does not consider the systemic principle of hormonal regulation in plants. Reaktionen von Pflanzen auf Trockenstress und Phosphormangel: Die Rolle von Phytohormonen in wurzelbezogenen Prozessen Umweltstress stellt den wesentlichsten Limitierungsfaktor für die landwirtschaftliche Produktion dar. Ein erheblicher Teil der jährlichen Ernten geht durch pathogene Organismen (biotischer Stress) oder durch die verheerende Wirkung abiotischer Stressoren verloren (v. a. Trockenstress und Nährstoffmangel). Es gibt zahlreiche Untersuchungen zur stofflichen Charakterisierung der pflanzlichen Stressreaktion an der Wurzel, z.,B. Nährstoffmobilisierung, Schadstoffimmobilisierung oder Etablierung von wachstumsfördernden Rhizobakterien durch Wurzelabscheidungen. Die hormonelle Steuerung dieser Prozesse ist bisher weniger erforscht. Der Artikel geht dieser Problematik am Beispiel von Trockenstress und Phosphormangel unter besonderer Berücksichtigung von Phytohormonen nach. Bei der Anpassung von Pflanzen an Wassermangelbedingungen spielt neben Ethylen das Phytohormon Abscisinsäure (ABA) eine wichtige Rolle. Es induziert morphologische und chemische Veränderungen in der Pflanze, die ein Überleben unter Wassermangelbedingungen ermöglichen. Beispielsweise induziert die ABA den Stomataschluss, eine Verringerung der Blattoberfläche sowie eine Erhöhung des Wurzel:Spross-Verhältnisses und bewirkt dadurch eine verringerte Transpiration und Vergrößerung des Bodenvolumens zur Erschließung von Wasservorräten. Darüber hinaus kann eine ABA-induzierte Anreicherung von osmotisch wirksamen Verbindungen zur Wasseraufnahme bei sinkendem Wasserpotential im Boden beitragen. Bei Phosphat (P)-Mangel sind vor allem Auxine, Cytokine und Ethylen an der morphologischen Anpassung der Wurzeln (Vergrößerung der Wurzeloberfläche durch verstärkte Bildung von Wurzelhaaren oder Proteoidwurzeln) beteiligt. Darüber hinaus bewirkt Indolyl-3-Essigäure eine Intensivierung der Abgabe von Wurzelabscheidungen zur direkten oder indirekten P-Mobilisierung in der Rhizosphäre. Trotzdem wird die unmittelbare Verwendung des Indikators "Hormongehalt" eines bestimmten Pflanzenorganes, beispielsweise der trockenstressinduzierte ABA-Gehalt von abgeschnittenen Blättern, für die Züchtung auf Stressresistenz als problematisch angesehen, da sie das systemische Prinzip der Hormonregulation nicht berücksichtigt. [source]