Substrate Availability (substrate + availability)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


KINETICS OF SOYBEAN LIPOXYGENASES ARE RELATED TO pH, SUBSTRATE AVAILABILITY AND EXTRACTION PROCEDURES

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2008
VERONICA S. CHEDEA
ABSTRACT The kinetic patterns of pure soy lipoxygenase LOX-1 and crude or defatted soybean extracts containing LOX isoenzymes (LOX-1, LOX-2 and LOX-3) were studied by UV spectrometry at 234 and 280 nm, depending on their extraction and measurement conditions. Different pHs (from 6.0 to 9.0), corresponding to specific activation of LOX isoenzymes and the ratios of enzyme protein per substrate were used in order to evaluate the enzyme rates, as indicators of its affinity for substrate in different environments. The crude soy extract contained mainly LOX-1 activity (measured at 234 nm, at pH 9.0) and LOX-3, in an approximate ratio of 3:1. The LOX-2 activity was very low. The defatted extracts buffered at pH 6.8 and 7.1 showed a low LOX-1 and LOX 2 activity, but mostly LOX-3 activity (measured at 280 nm, at pH 7.1), with a mirror-type relation between the enzyme/substrate ratio and their enzymatic specific activity. The results suggest that defatting inhibits specifically the LOX-1 activity and indicate the possibility to modulate LOX activity by modifications of enzyme/substrate ratios and modifications of pH in the enzyme environment. PRACTICAL APPLICATIONS Because of the specific kinetic behaviors of the three different LOXs found in crude soy extracts involved in off-flavor generation, one can modulate the inhibition of these isoenzymes during soybean processing. Our experiments showed that pH variation could be a simple solution to inhibit the LOX isoenzymes, and therefore, the off-flavor generation. From the analytical point of view, the techniques described in this article are designed to be as simple as possible, and easy to use at large-scale level in food industry (food chain control). The idea is to minimize the number of separate chemical manipulations and, thereby, minimize errors. These studies can offer the background of further inhibition experiments in vitro using natural extracts. The LOX inhibition by natural antioxidants is related as well to pH and other factors influencing the enzyme's activity; this idea can be also valorized practically in the future. [source]


Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

ACTA PHYSIOLOGICA, Issue 1 2007
J. W. Helge
Abstract Aim:, Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. Methods:, Data were obtained from 11 competitors of a 4- to 5-day, almost continuous ultraendurance race (seven males, four females; age: 36 ± 11 years; cycling o2peak: males 57.4 ± 5.9, females 48.1 ± 4.0 mL kg,1 min,1). Before and after the race muscle biopsies were obtained from vastus lateralis, respiratory gases were sampled during cycling at 25 and 50% peak aerobic power output, venous samples were obtained, and fat mass was estimated by bioimpedance under standardized conditions. Results:, After the race fat mass was decreased by 1.6 ± 0.4 kg (11%; P < 0.01). Respiratory exchange ratio at the 25 and 50% workloads decreased (P < 0.01) from 0.83 ± 0.06 and 0.93 ± 0.03 before, to 0.71 ± 0.01 and 0.85 ± 0.02, respectively, after the race. Plasma fatty acids were 3.5 times higher (from 298 ± 74 to 1407 ± 118 ,mol L,1; P < 0.01). Muscle glycogen content fell 50% (from 554 ± 28 to 270 ± 25 nmol kg,1 d.w.; n = 7, P < 0.01), whereas the decline in muscle triacylglycerol (from 32 ± 5 to 22 ± 3 mmol kg,1 d.w.; P = 0.14) was not statistically significant. After the race, muscle mRNA content of lipoprotein lipase and glycogen synthase increased (P < 0.05) 3.9- and 1.7-fold, respectively, while forkhead homolog in rhabdomyosarcoma, pyruvate dehydrogenase kinase 4 and vascular endothelial growth factor mRNA tended (P < 0.10) to be higher, whereas muscle peroxisome proliferator-activated receptor , co-activator-1, mRNA tended to be lower (P = 0.06). Conclusion:, Very prolonged exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes. [source]


Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages

ECOGRAPHY, Issue 2 2006
Heloise Gibb
Intensive forestry practises in the Swedish landscape have led to the loss and fragmentation of stable old-growth habitats. We investigated relationships between landscape composition at multiple scales and the composition of saproxylic beetle assemblages in nine clear-cut, mature managed and old-growth spruce-dominated forest stands in the central boreal zone of Sweden. We set out fresh spruce and birch logs and created spruce snags in 2001,2002 to experimentally test the effects of coarse woody debris (CWD) type and forest management on the composition of early and late successional, and red-listed saproxylic beetle assemblages. We examined effects of CWD availability at 100 m, and landscape composition at 1 and 10 km on saproxylic beetle abundances. Additionally, we tested whether assemblage similarity decreased with increasing distance between sites. We collected beetles from the experimental logs using eclector and window traps in four periods during 2003. CWD was measured and landscape composition data was obtained from maps of remotely sensed data. The composition of saproxylic beetles differed among different CWD substrates and between clear-cuts and the older stand types, however differences between mature managed and old-growth forests were significant only for red-listed species. Assemblage similarities for red-listed species on clear-cuts were more different at greater distances apart, indicating that they have more localised distributions. CWD availability within 100 m of the study sites was rarely important in determining the abundance of species, suggesting that early successional saproxylic beetles can disperse further than this distance. At a larger scale, a large area of suitable stand types within both 1 and 10 km resulted in greater abundances in the study sites for several common and habitat-specific species. The availability of suitable habitat at scales of 1,10 km is thus likely to be important in the survival of many saproxylic species in forestry-fragmented areas. [source]


Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
Karel, imek
Summary We present a detailed analysis of the effects of distinct bacterial mortality factors, viral lysis and heterotrophic nanoflagellates (HNF) bacterivory, associated with the development of filamentous Flectobacillus populations. Reservoir bacterioplankton communities were subjected to additions of both HNF and viruses together, or HNF alone, and then incubated in situ in dialyses bags. For distinct bacterial groups, mortality or growth stimulation was analysed by examining bacterial prey ingested in HNF food vacuoles with fluorescence in situ hybridization (FISH) and via FISH with microautoradiography (MAR-FISH). We also developed a semi-quantitative MAR-FISH-based estimation of relative activities of Flectobacillus populations (targeted by the R-FL615 probe). Bacterial groups vulnerable to HNF predation (mainly clusters of Betaproteobacteria), or discriminated against (Actinobacteria), were detected. Bacterial lineages most vulnerable to virus-lysis (mainly the Betaproteobacteria not targeted by the R-BT065 probe, of the Polynucleobacter cluster) were identified by comparing treatments with HNF alone to HNF and viruses together. Filaments affiliated with the Flectobacillus cluster appeared in both treatments, but were about twice as abundant, long and active as in incubations with viruses and HNF as compared with HNF alone. Viruses appeared to selectively suppress several bacterial groups, perhaps enhancing substrate availability thus stimulating growth and activity of filamentous Flectobacillus. [source]


Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea abies (L.)Karst.) stand in southern Germany

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010
P. Rosenkranz
We investigated the magnitudes of temporal and spatial variabilities of gross ammonification and nitrification, in an N-saturated temperate forest ecosystem. Forest soil gross ammonification, gross nitrification and heterotrophic soil respiration were measured in the forest floor and uppermost mineral layer over a period of 3 years. Total annual gross fluxes for the organic layer and uppermost mineral horizon (0,4 cm) were in the range of 800,980 kg N ha,1 year,1 for gross ammonification and 480,590 kg N ha,1 year,1 for gross nitrification. Annual heterotrophic soil respiration was 8000,8900 kg C ha,1 year,1. Highest soil C and N turnover rates occurred in summer, and a consistent pattern was observed throughout the observation period, with highest values for plots located at a clear-cut area and lowest values for plots located at an unmanaged, approximately 100-year-old, spruce control site. Soil moisture, soil temperature and substrate availability accounted for most of the observed variability of C and N turnover rates. Because gross rates of inorganic N production were more than an order of magnitude larger than ecosystem N losses along hydrological and gaseous pathways, our study underlines the importance of internal microbial N turnover processes for ecosystem N cycling and retention. [source]


Temperature-dependent changes in the soil bacterial community in limed and unlimed soil

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2003
Marie Pettersson
Abstract A humus soil with a pH(H2O) of 4.9 was limed to a pH of 7.5 and was incubated together with samples from unlimed and field limed (pH 6.1) soils at 5, 20 and 30°C for up to 80 days. The changes in the phospholipid fatty acid (PLFA) pattern were most rapid for the bacterial community of the soil incubated at 30°C, while no changes were found in the soil incubated at 5°C. The response of the community activity to temperature was measured using the thymidine incorporation method on bacteria extracted from the soil. The bacterial community in soil incubated at 30°C became more adapted to high temperature than that in soil samples incubated at 5°C. When soil samples incubated at 30°C and 20°C were returned to 5°C for 35 days, only small changes in the PLFA pattern were found. No significant shift in community temperature adaptation was found. Thus, higher temperatures (with higher turnover) led to higher rates of change in both the PLFA pattern and the activity response to temperature, compared with lower temperatures. No effect of liming as a way of increasing substrate availability and turnover on the rate of change was observed. Changes in the PLFA pattern appeared sooner than changes in the activity response to temperature, indicating that changes in the PLFA pattern were mainly due to phenotypic acclimation and not to species replacement. [source]


Reversible transition between active and dormant microbial states in soil

FEMS MICROBIOLOGY ECOLOGY, Issue 2-3 2001
John Stenström
Abstract The rate of respiration obtained in the substrate-induced respiration (SIR) method can be divided into the respiration rate of growing (r) and non-growing (K) microorganisms. The fraction of r is generally small (5,20%) in soils with no recent addition of substrates, but can be 100% in soils with high substrate availability. This suggests that substrate availability determines the proportion of biomass between these groups, and implies that transitions between them can take place reversibly. These hypotheses were tested by adding three different amounts of glucose which induced first-order, zero-order, and growth-associated respiration kinetics to three soils at four pre-incubation times (4, 12, 27, and 46 days) before the SIR measurement. An abiotic flush of CO2 in the SIR measurement was detected and corrected for before data analysis. Accumulated CO2 -C over 4 days after glucose addition, corrected for the respiration in unamended controls, corresponded to 41,50% mineralization of the glucose-C, and the relative amount mineralized by each soil was independent of the glucose amount added. The high glucose concentration gave an increased SIR, which reverted to the initial value within 27,46 days. In a specific sample, the maximum respiration rate induced during the pre-incubation, and the amount of organisms transformed from the K to the r state, as quantified in respiration rate units in the SIR measurement, were identical to each other, and these parameters were also highly correlated to the initial glucose concentration. The K,r transition was very fast, probably concurrent with the instantaneous increase in the respiration rate obtained by the glucose amendment. Thereafter, a slow first-order back-transition from the r to the K state ensued, with half-lives of 12, 23, and 70 days for the three soils. The results suggest the existence of community-level controls by which growth within or of the whole biomass is inhibited until it has been completely transformed into the r state. The data also suggest that the microbial specific activity is not related to the availability of exogenous substrate in a continuous fashion, rather it responds as a sharp transition between dormant and fully active. Furthermore, the inherent physiological state of the microbial biomass is strongly related to its history. It is proposed that the normal dynamics of the soil microbial biomass is an oscillation between active and dormant physiological states, while significant growth occurs only at substantial substrate amendment. [source]


Bacterial metabolism in small temperate streams under contemporary and future climates

FRESHWATER BIOLOGY, Issue 12 2007
KAJ SAND-JENSEN
Summary 1. We examined the detailed temperature dependence (0,40 °C) of bacterial metabolism associated with fine sediment particles from three Danish lowland streams to test if temperature dependence varied between sites, seasons and quality of organic matter and to evaluate possible consequences of global warming. 2. A modified Arrhenius model with reversible denaturation at high temperatures could account for the temperature dependence of bacterial metabolism and the beginning of saturation above 35 °C and it was superior to the unmodified Arrhenius model. Both models overestimated respiration rates at very low temperatures (<5 °C), whereas Ratkowsky's model , the square root of respiration , provided an excellent linear fit between 0 and 30 °C. 3. There were no indications of differences in temperature dependence among samples dominated by slowly or easily degradable organic substrates. Optimum temperature, apparent minimum temperature, Q10 -values for 0,40 °C and activation energies of bacterial respiration were independent of season, stream site and degradability of organic matter. 4. Q10 -values of bacterial respiration declined significantly with temperature (e.g. 3.31 for 5,15 °C and 1.43 for 25,35 °C) and were independent of site and season. Q10 -values of bacterial production behaved similarly, but were significantly lower than Q10 -values of respiration implying that bacterial growth efficiency declined with temperature. 5. A regional warming scenario for 2071,2100 (IPCC A2) predicted that mean annual temperatures will increase by 3.5 °C in the air and 2.2,4.3 °C in the streams compared with the control scenario for 1961,1990. Temperature is expected to rise more in cool groundwater-fed forest springs than in open, summer-warm streams. Mean annual bacterial respiration is estimated to increase by 26,63% and production by 18,41% among streams assuming that established metabolism,temperature relationships and organic substrate availability remain the same. To improve predictions of future ecosystem behaviour, we further require coupled models of temperature, hydrology, organic production and decomposition. [source]


The coupling of biological iron cycling and mineral weathering during saprolite formation, Luquillo Mountains, Puerto Rico

GEOBIOLOGY, Issue 4 2005
H. L. BUSS
ABSTRACT Corestones of quartz diorite bedrock in the Rio Icacos watershed in Puerto Rico weather spheroidally to form concentric sets of partially weathered rock layers (referred to here as rindlets) that slowly transform to saprolite. The rindlet zone (0.2,2 m thick) is overlain by saprolite (2,8 m) topped by soil (0.5,1 m). With the objective of understanding interactions between weathering, substrate availability, and resident micro-organisms, we made geochemical and microbiological measurements as a function of depth in 5 m of regolith (soil + saprolite). We employed direct microscopic counting of total cell densities; enumeration of culturable aerobic heterotrophs; extraction of microbial DNA for yield calculations; and biochemical tests for iron-oxidizing bacteria. Total cell densities, which ranged from 2.5 × 106 to 1.6 × 1010 g,1 regolith, were higher than 108 g,1 at three depths: in the upper 1 m, at 2.1 m, and between 3.7 and 4.9 m, just above the rindlet zone. High proportions of inactive or unculturable cells were indicated throughout the profile by very low percentages of culturable heterotrophs (0.0004% to 0.02% of total cell densities). The observed increases in total and culturable cells and DNA yields at lower depths were not correlated with organic carbon or total iron but were correlated with moisture and HCl-extractable iron. Biochemical tests for aerobic iron-oxidizers were also positive at 0.15,0.6 m, at 2.1,2.4 m, and at 4.9 m depths. To interpret microbial populations within the context of weathering reactions, we developed a model for estimating growth rates of lithoautotrophs and heterotrophs based on measured substrate fluxes. The calculations and observations are consistent with a model wherein electron donor flux driving bacterial growth at the saprolite,bedrock interface is dominated by Fe(II) and where autotrophic iron-oxidizing bacteria support the heterotrophic population and contribute to bedrock disaggregation and saprolite formation. [source]


Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment

GLOBAL CHANGE BIOLOGY, Issue 12 2009
GEMA BÁRCENAS-MORENO
Abstract Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5,50 °C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetate-in-ergosterol incorporation). Growth at different temperatures was estimated after about a month using a short-term assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30 °C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature. [source]


Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study

GLOBAL CHANGE BIOLOGY, Issue 2 2009
LINGLI LIU
Abstract Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long-term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230-day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m,2 yr,1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF. [source]


Long-term ozone effects on vegetation, microbial community and methane dynamics of boreal peatland microcosms in open-field conditions

GLOBAL CHANGE BIOLOGY, Issue 8 2008
SAMI K. MÖRSKY
Abstract To study the effects of elevated ozone concentration on methane dynamics and a sedge species, Eriophorum vaginatum, we exposed peatland microcosms, isolated by coring from an oligotrophic pine fen, to double ambient ozone concentration in an open-air ozone exposure field for four growing seasons. The field consists of eight circular plots of which four were fumigated with elevated ozone concentration and four were ambient controls. At the latter part of the first growing season (week 33, 2003), the methane emission was 159±14 mg CH4 m,2 day,1 (mean±SE) in the ozone treatment and 214±8 mg CH4 m,2 day,1 under the ambient control. However, towards the end of the experiment the ozone treatment slightly, but consistently, enhanced the methane emission. At the end of the third growing season (2005), microbial biomass (estimated by phospholipid fatty acid biomarkers) was higher in peat exposed to ozone (1975±108 nmol g,1 dw) than in peat of the control microcosms (1589±115 nmol g,1 dw). The concentrations of organic acids in peat pore water showed a similar trend. Elevated ozone did not affect the shoot length or the structure of the sedge E. vaginatum leaves but it slightly increased the total number of sedge leaves towards the end of the experiment. Our results indicate that elevated ozone concentration enhances the general growth conditions of microbes in peat by increasing their substrate availability. However, the methane production did not reflect the increase in the concentration of organic acids, probably because hydrogenotrophic methane production dominated in the peat studied. Although, we used isolated peatland microcosms with limited size as study material, we did not find experimental factors that could have hampered the basic conclusions on the effects of ozone. [source]


Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem

GLOBAL CHANGE BIOLOGY, Issue 2 2005
Christopher W. Harper
Abstract Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide (CO2) flux is an important component of C cycling in terrestrial ecosystems, and is strongly influenced by climate. While many studies have assessed the influence of soil water content on soil CO2 flux, few have included experimental manipulation of rainfall amounts in intact ecosystems, and we know of no studies that have explicitly addressed the influence of the timing of rainfall events. In order to determine the responses of soil CO2 flux to altered rainfall timing and amounts, we manipulated rainfall inputs to plots of native tallgrass prairie (Konza Prairie, Kansas, USA) over four growing seasons (1998,2001). Specifically, we altered the amounts and/or timing of growing season rainfall in a factorial combination that included two levels of rainfall amount (100% or 70% of naturally occurring rainfall quantity) and two temporal patterns of rain events (ambient timing or a 50% increase in length of dry intervals between events). The size of individual rain events in the altered timing treatment was adjusted so that the quantity of total growing season rainfall in the ambient and altered timing treatments was the same (i.e. fewer, but larger rainfall events characterized the altered timing treatment). Seasonal mean soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered rainfall timing, and by 20% when both were combined (P<0.01). These changes in soil CO2 flux were consistent with observed changes in plant productivity, which was also reduced by both reduced rainfall quantity and altered rainfall timing. Soil CO2 flux was related to both soil temperature and soil water content in regression analyses; together they explained as much as 64% of the variability in CO2 flux across dates under ambient rainfall timing, but only 38,48% of the variability under altered rainfall timing, suggesting that other factors (e.g. substrate availability, plant or microbial stress) may limit CO2 flux under a climate regime that includes fewer, larger rainfall events. An analysis of the temperature sensitivity of soil CO2 flux indicated that temperature had a reduced effect (lower correlation and lower Q10 values) under the reduced quantity and altered timing treatments. Recognition that changes in the timing of rainfall events may be as, or more, important than changes in rainfall amount in affecting soil CO2 flux and other components of the carbon cycle highlights the complex nature of ecosystem responses to climate change in North American grasslands. [source]


Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2010
Leslie L. Orzetti
Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract:, This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration. [source]


Effect of carbon source addition on toluene biodegradation by an Escherichia coli DH5, transconjugant harboring the TOL plasmid

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010
Kaoru Ikuma
Abstract Horizontal gene transfer (HGT) of plasmids is a naturally occurring phenomenon which could be manipulated for bioremediation applications. Specifically, HGT may prove useful to enhance bioremediation through genetic bioaugmentation. However, because the transfer of a plasmid between donor and recipient cells does not always result in useful functional phenotypes, the conditions under which HGT events result in enhanced degradative capabilities must first be elucidated. The objective of this study was to determine if the addition of alternate carbon substrates could improve toluene degradation in Escherichia coli DH5, transconjugants. The addition of glucose (0.5,5,g/L) and Luria,Bertani (LB) broth (10,100%) resulted in enhanced toluene degradation. On average, the toluene degradation rate increased 14.1 (±2.1)-fold in the presence of glucose while the maximum increase was 18.4 (±1.7)-fold in the presence of 25% LB broth. Gene expression of xyl genes was upregulated in the presence of glucose but not LB broth, which implies different inducing mechanisms by the two types of alternate carbon source. The increased toluene degradation by the addition of glucose or LB broth was persistent over the short-term, suggesting the pulse amendment of an alternative carbon source may be helpful in bioremediation. While the effects of recipient genome GC content and other conditions must still be examined, our results suggest that changes in environmental conditions such as alternate substrate availability may significantly improve the functionality of the transferred phenotypes in HGT and therefore may be an important parameter for genetic bioaugmentation optimization. Biotechnol. Bioeng. 2010;107: 269,277. © 2010 Wiley Periodicals, Inc. [source]