Substrate Analog (substrate + analog)

Distribution by Scientific Domains


Selected Abstracts


Substrate analogs induce an intermediate conformational change in Toxoplasma gondii adenosine kinase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2007
Yan Zhang
Adenosine kinase (AK) is a key enzyme in purine metabolism in the ubiquitous intracellular parasite Toxoplasma gondii and is a potential chemotherapeutic target for the treatment of T. gondii infections. To better understand the structure,activity relationship of 6-substituted purine ribosides, the structures of the T. gondii AK,N6,N6 -dimethyladenosine (DMA) complex, the AK,DMA,AMP-PCP complex, the AK,6-­methyl mercaptopurine riboside (MMPR) complex and the AK,MMPR,AMP-PCP complex were determined to 1.35, 1.35, 1.75 and 1.75,Å resolution, respectively. These structures reveal a conformation intermediate between open and closed, with a small lid-domain rotation of 12°. Residues Gly143- X - X -Gly146 undergo torsional changes upon substrate binding, which together with a Gly68-Gly69 switch induces a hinge bending of the lid domain. The intermediate conformation suggests that ATP binding is independent of adenosine binding. Orienting the ,-phosphate group of ATP into the optimal catalytic position may be the last step before the onset of chemical catalysis and may require the translocation of Arg136 following the complete closure of the lid domain. 6-­Substituted purine-nucleoside analogs are accommodated in a hydrophobic cavity. Modification at the N6 or C6 position of the nucleoside would affect the interactions with the surrounding residues and the binding affinity. [source]


Novel MRI and fluorescent probes responsive to the Factor XIII transglutaminase activity

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 4 2010
Lorenzo Tei
Abstract Transglutaminases, including factor XIII and tissue transglutaminase, participate in multiple extracellular processes associated with remodeling of the extracellular matrix during wound repair, blood clotting, tumor progression and fibrosis of ischemic injuries. The aim of this work was to evaluate a novel substrate analog for transglutaminase optimized by molecular modeling calculations (DCCP16), which can serve for molecular imaging of transglutaminase activity by magnetic resonance imaging and by near-infrared imaging. Experimental data showed covalent binding of Gd,DCCP16 and DCCP16-IRIS Blue to human clots, to basement membrane components and to casein in purified systems as well as in three-dimensional multicellular spheroids. In vivo, DCCP16 showed enhancement with a prolonged retention in clots and tumors, demonstrating the ability to detect both factor XIII and tissue transglutaminase mediated covalent binding of the contrast material. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 3 2006
Liora Shiftan
Abstract One of the attractions of molecular imaging using ,smart' bioactive contrast agents is the ability to provide non-invasive data on the spatial and temporal changes in the distribution and expression patterns of specific enzymes. The tools developed for that aim could potentially also be developed for functional imaging of enzyme activity itself, through quantitative analysis of the rapid dynamics of enzymatic conversion of these contrast agents. High molecular weight hyaluronan, the natural substrate of hyaluronidase, is a major antiangiogenic constituent of the extracellular matrix. Degradation by hyaluronidase yields low molecular weight fragments, which are proangiogenic. A novel contrast material, HA-GdDTPA-beads, was designed to provide a substrate analog of hyaluronidase in which relaxivity changes are induced by enzymatic degradation. We show here a first-order kinetic analysis of the time-dependent increase in R2 as a result of hyaluronidase activity. The changes in R2 and the measured relaxivity of intact HA-GdDTPA-beads (r2B) and HA-GdDTPA fragments (r2D) were utilized for derivation of the temporal drop in concentration of GdDTPA in HA-GdDTPA-beads as the consequence of the release of HA-GdDTPA fragments. The rate of dissociation of HA-GdDTPA from the beads showed typical bell-shaped temperature dependence between 7 and 36 °C with peak activity at 25 °C. The tools developed here for quantitative dynamic analysis of hyaluronidase activity by MRI would allow the use of activation of HA-GdDTPA-beads for the determination of the role of hyaluronidase in altering the angiogenic microenvironment of tumor micro metastases. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Crystal structure of archaeal highly thermostable L -aspartate dehydrogenase/NAD/citrate ternary complex

FEBS JOURNAL, Issue 16 2007
Kazunari Yoneda
The crystal structure of the highly thermostable l -aspartate dehydrogenase (l -aspDH; EC 1.4.1.21) from the hyperthermophilic archaeon Archaeoglobus fulgidus was determined in the presence of NAD and a substrate analog, citrate. The dimeric structure of A. fulgidusl -aspDH was refined at a resolution of 1.9 Å with a crystallographic R -factor of 21.7% (Rfree = 22.6%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. Structural comparison of the A. fulgidusl -aspDH/NAD/citrate ternary complex and the Thermotoga maritimal -aspDH/NAD binary complex showed that A. fulgidusl -aspDH assumes a closed conformation and that a large movement of the two loops takes place during substrate binding. Like T. maritimal -aspDH, the A. fulgidus enzyme is highly thermostable. But whereas a large number of inter- and intrasubunit ion pairs are responsible for the stability of A. fulgidusl -aspDH, a large number of inter- and intrasubunit aromatic pairs stabilize the T. maritima enzyme. Thus stabilization of these two l -aspDHs appears to be achieved in different ways. This is the first detailed description of substrate and coenzyme binding to l -aspDH and of the molecular basis of the high thermostability of a hyperthermophilic l -aspDH. [source]


Real time non-invasive imaging of receptor,ligand interactions in vivo

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2003
Paul Winnard
Abstract Non-invasive longitudinal detection and evaluation of gene expression in living animals can provide investigators with an understanding of the ontogeny of a gene's biological function(s). Currently, mouse model systems are used to optimize magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and optical imaging modalities to detect gene expression and protein function. These molecular imaging strategies are being developed to assess tumor growth and the tumor microenvironment. In addition, pre-labeling of progenitor cells can provide invaluable information about the developmental lineage of stem cells both in organogenesis and tumorigenesis. The feasibility of this approach has been extensively tested by targeting of endogenous tumor cell receptors with labeled ligand (or ligand analog) reporters and targeting enzymes with labeled substrate (or substrate analog). We will primarily discuss MRI, PET, and SPECT imaging of cell surface receptors and the feasibility of non-invasive imaging of gene expression using the tumor microenvironment (e.g., hypoxia) as a conditional regulator of gene expression. © 2003 Wiley-Liss, Inc. [source]


Investigations into the development of catalytic activity in anti-acetylcholinesterase idiotypic and anti-idiotypic antibodies

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2009
Glynis Johnson
Abstract We have previously described anti-acetylcholinesterase antibodies that display acetylcholinesterase-like catalytic activity. No evidence of contaminating enzymes was found, and the antibodies are kinetically and apparently structurally distinct from both acetylcholinesterase (AChE) and butyrylcholinesterase. We have also mimicked the antibody catalytic sites in anti-anti-idiotypic (Ab3) antibodies. Independently from us, similar acetylcholinesterase-like antibodies have been raised as anti-idiotypic (Ab2) antibodies against a non-catalytic anti-acetylcholinesterase antibody, AE-2. In this paper, we describe an epitope analysis, using synthetic peptides in ELISA and competition ELISA, and a peptide array, of five catalytic anti-acetylcholinesterase antibodies (Ab1s), three catalytic Ab3s, as well as antibody AE-2 and a non-catalytic Ab2. The catalytic Ab1s and Ab3s recognized three Pro- and Gly-containing sequences (40PPMGPRRFL, 78PGFEGTE, and 258PPGGTGGNDTELVAC) on the AChE surface. As these sequences do not adjoin in the AChE structure, recognition would appear to be due to cross-reaction. This was confirmed by the observation that the sequences superimpose structurally. The non-catalytic antibodies, AE-2 and the Ab2, recognized AChE's peripheral anionic site (PAS), in particular, the sequence 70YQYVD, which contains two of the site's residues. The crystal structure of the AChE tetramer (Bourne et al., 1999) shows direct interaction and high complementarity between the 257CPPGGTGGNDTELVAC sequence and the PAS. Antibodies recognizing the sequence and the PAS may, in turn, be complementary; this may account for the apparent paradox of catalytic development in both Ab1s and Ab2s. The PAS binds, but does not hydrolyze, substrate. The catalytic Ab1s, therefore, recognize a site that may function as a substrate analog, and this, together with the presence of an Arg-Glu salt bridge in the epitope, suggests mechanisms whereby catalytic activity may have developed. In conclusion, the development of AChE-like catalytic activity in anti-AChE Ab1s and Ab2s appears to be the result of a combination of structural complementarity to a substrate-binding site, charge complementarity to a salt bridge, and specific structural peculiarities of the AChE molecule. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis

PROTEIN SCIENCE, Issue 3 2000
Thomas Hollis
Abstract The X-ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 Å resolution. Like other members of the class 18 hydrolase family, this 427 residue protein is an eight-stranded ,/,-barrel. Although lacking an N-terminal chitin anchoring domain, the enzyme closely resembles the chitinase from Serratia marcescens. Among the conserved features are three cis peptide bonds, all involving conserved active site residues. The active site is formed from conserved residues such as tryptophans 47, 131, 315, 378, tyrosines 239 and 293, and arginines 52 and 295. Glu171 is the catalytic acid in the hydrolytic mechanism; it was mutated to a Gln, and activity was abolished. Allosamidin is a substrate analog that strongly inhibits the class 18 enzymes. Its binding to the chitinase hevamine has been observed, and we used conserved structural features of the two enzymes to predict the inhibitors binding to the fungal enzyme. [source]


Photometric and Electrochemical Enzyme-Multiplied Assay Techniques Using ,-Galactosidase as Reporter Enzyme

BIOTECHNOLOGY PROGRESS, Issue 3 2006
Francis H. Ko
,-Galactosidase (,-gal) is shown to be a versatile new reporter enzyme in both photometric and electrochemical enzyme-multiplied assay techniques (EMATs). The well-known ,-gal substrate analog, o -nitrophenyl ,- d -galactopyranoside, yields the visibly colored, o -nitrophenol product upon hydrolysis, whereas the substrate, p -aminophenyl ,- d -galactopyranoside, gives rise to an electrooxidizable product, p -aminophenol. These ,-gal substrates made possible the demonstration of both photometric and electrochemical signal transduction schemes for ,-gal-based EMAT detection of estradiol (as the estradiol-bovine serum albumin (E-BSA) conjugate). The EMAT system is composed of the reporter enzyme, ,-gal, with covalently attached estradiol, and estrogen antibody, which inhibits enzyme activity of the ,-gal-estradiol conjugate up to ,75%. Reporter enzyme inhibition is relieved significantly by addition of ,2 ng/mL of estradiol (as E-BSA), which competes for binding with the antibody. Thus, the presence of analyte (E-BSA) is reported by the enzyme (,-gal), which amplifies the ligand-protein dissociation event by turning over its substrate repeatedly. The electrochemical version of EMAT, based on amperometric detection of p -aminophenol, is responsive to added estradiol within minutes. These results show that ,-gal may serve as a useful alternative to glucose-6-phosphate dehydrogenase, which currently is used as reporter enzyme in commercially available EMAT systems. [source]


Detection of human neutrophil elastase with peptide-bound cross-linked ethoxylate acrylate resin analogs

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 4 2005
J.V. Edwards
Abstract:, An assessment of elastase-substrate kinetics and adsorption at the solid,liquid interface of peptide-bound resin was made in an approach to the solid-phase detection of human neutrophil elastase (HNE), which is found in high concentration in chronic wound fluid. N-succinyl-alanine-alanine-proline-valine- p -nitroanilide (suc-Ala-Ala-Pro-Val- pNA), a chromogenic HNE substrate, was attached to glycine-cross-linked ethoxylate acrylate resins (Gly-CLEAR) by a carbodiimide reaction. To assess the enzyme-substrate reaction in a two-phase system, the kinetic profile of resin-bound peptide substrate hydrolysis by HNE was obtained. A glycine and di-glycine spacer was placed between the resin polymer and substrate to assess the steric and spatial requirements of resin to substrate with enzyme hydrolysis. The enzymatic activities of suc-Ala-Ala-Pro-Val- pNA and suc-Ala-Ala-Pro-Ala- pNA on the solid-phase resin were compared with similar analogs in solution. An increase in visible wavelength absorbance was observed with increasing amounts of substrate-resin and enzyme concentration. Enzyme hydrolysis of the resin-bound substrate was also demonstrated on a polypropylene surface, which was employed for visible absorbance of released chromophore. A soluble active substrate analog was released from the resin through saponification of the ethoxylate ester linkages in the resin polymer. The resin-released conjugate of the HNE substrate demonstrated an increased dose response with increasing enzyme concentration. The synthesis and assay of elastase substrates bound to CLEAR resin gives an understanding of substrate-elastase adsorption and activity at the resin's solid,liquid interface for HNE detection with a solid-phase peptide. [source]


Substrate activation of butyrylcholinesterase and substrate inhibition of acetylcholinesterase by 3,3-dimethylbutyl- N - n -butylcarbamate and 2-trimethylsilyl-ethyl- N - n -butylcarbamate

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2007
Shyh-Ying Chiou
Abstract Carbamates are used to treat Alzheimer's disease. These compounds inhibit acetylcholinesterase and butyrylcholinesterase. The goal of this work is to use the substrate analogs of butyrylcholinesterase, 3,3-dimethylbutyl- N - n -butylcarbamate (1) and 2-trimethylsilyl-ethyl- N - n -butylcarbamate (2) to probe the substrate activation mechanism of butyrylcholinesterase. Compounds 1 and 2 are characterized as the pseudo substrate inhibitors of acetylcholinesterase; however, compounds 1 and 2 are characterized as the essential activators of butyrylcholinesterase. Therefore, compounds 1 and 2 mimic the substrate in the acetylcholinesterase-catalyzed reactions, but the behavior of compounds 1 and 2 mimics the substrate activation in the butyrylcholinesterase-catalyzed reactions. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:24,31, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20158 [source]


RPA repair recognition of DNA containing pyrimidines bearing bulky adducts,

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2008
Irina O. Petruseva
Abstract Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA,ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5,-phosphate end of one duplex-forming DNA strand. RPA,dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA,<,Antr-dC-ddsDNA,<,mmdsDNA,<,FAPdU-, Pyr-dU-ddsDNA,<,FAP-dC-ddsDNA (KD,=,68,±,1; 25,±,6; 13,±,1; 8,±,2, and 3.5,±,0.5,nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA,ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Ribosomal crystallography: Peptide bond formation and its inhibition

BIOPOLYMERS, Issue 1 2003
Anat Bashan
Abstract Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3, end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination. © 2003 Wiley Periodicals, Inc. Biopolymers, 2003 [source]