Home About us Contact | |||
Subsequent Invasion (subsequent + invasion)
Selected AbstractsFine scale genetic population structure of the freshwater and Omono types of nine-spined stickleback Pungitius pungitius (L.) within the Omono River system, JapanJOURNAL OF FISH BIOLOGY, Issue 2006T. Tsuruta The fine scale geographic population structure of two types of nine-spined stickleback Pungitius pungitius (the widely distributed freshwater type and a local endemic, the Omono type) within the Omono River system, Japan, was investigated. A principal components analysis of allele frequencies and neighbour-joining tree for pair-wise FST values, based on 10 allozyme loci, revealed that the Omono type was comprised of four regional groups with relatively high genetic divergence. This grouping was also supported by hierarchical analysis of molecular variance (AMOVA) with a higher variance component among the regional groups, and by an exact test with significant genotypic differentiation for all sample pairs among the regional groups. Moreover, in the clustering of individuals using the Bayesian method, most of individuals in each regional group were assigned the corresponding cluster. On the other hand, there were less pronounced regional groups of the freshwater type, although AMOVA, exact test for genotypic differentiation and Bayesian analysis indicated genetic divergence between two sampling sites in lower reach of the Omono River and other sites. The results suggest that the Omono type represented an earlier colonization, with subsequent invasion of the freshwater type. [source] Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae)MOLECULAR ECOLOGY, Issue 14 2009YOUNG JIN CHUN Abstract Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations (QST , FST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation (QST) with its expectation under neutrality (FST) revealed no evidence of disruptive selection (QST > FST) or stabilizing selection (QST < FST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research. [source] When does ecosystem engineering cause invasion and species replacement?OIKOS, Issue 8 2008Andrew Gonzalez Introduced exotic species can dominate communities and replace native species that should be better adapted to their local environment, a paradox that is usually explained by the absence of natural enemies and by habitat alteration resulting from anthropogenic disturbance. Additionally, introduced species can enhance their invasion success and impact on native species by modifying selection pressures in their new environment through ecosystem engineering. We analyse a simple dynamic model of indirect competition for habitat between a non-engineering resident species and an engineering exotic species. The conditions for invasion and competitive exclusion of the resident by the exotic species and the range of dynamic outcomes suggested by the model are determined by the form of density dependence. We give simple criteria for the success of the invading species on dimensionless quantities involving rates of ecosystem engineering and of habitat degradation. The model's predictions offer an additional explanation for a range of invasion dynamics reported in the literature, including lag times between introduction and establishment. One intriguing result is that a series of failed invasions may successively reduce environmental resistance to subsequent invasion, through a cumulative effect of habitat transformation. More work is needed to determine the frequency and conditions in which engineering is required for successful establishment, and whether highly-successful (or high-impact) invaders are more likely to possess ecosystem engineering traits. [source] Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporumPLANT PATHOLOGY, Issue 3 2000B. Bertrand Coffee corky-root disease, also called corchosis, was first detected in 1974 in a small area of Costa Rica where the root-knot nematode Meloidogyne arabicida is the dominant species. An epidemiological study revealed a constant association between Meloidogyne spp. and Fusarium sp. in cases of corky root. No corky root appears to have been reported in association with Meloidogyne exigua, which is the prevalent root-knot nematode on coffee in Costa Rica. Fusarium spp. are often cited as components of disease complexes in association with nematodes. Combined inoculations using M. arabicida or M. exigua with Fusarium oxysporum under controlled conditions showed that only the combination with M. arabicida produced corky-root symptoms on Coffea arabica cvs Caturra or Catuai. Fusarium oxysporum alone was nonpathogenic. Meloidogyne exigua or M. arabicida alone caused galls and reduction in shoot height, but no corky-root symptoms. When cultivars susceptible and resistant to M. arabicida were studied under field conditions for 5 years, all the susceptible cultivars exhibited corky-root symptoms on 40,80% of their root systems. Cultivars that were resistant to M. arabicida but not to M. exigua showed no corky root. These observations lead to the conclusion that corky-root disease has a complex etiology, and emphasize the dominant role of M. arabicida as a predisposing agent to subsequent invasion by F. oxysporum. Consequently, genetic resistance to M. arabicida appears to provide an effective strategy against the disease. [source] Liver Perfusion in Sepsis, Septic Shock, and Multiorgan FailureTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2008Herbert Spapen Abstract Sepsis causes significant alterations in the hepatic macro- and microcirculation. Diverging views exist on global hepatic blood flow during experimental sepsis because of the large variety in animal and sepsis models. Fluid-resuscitated clinical sepsis is characterized by ongoing liver ischemia due to a defective oxygen extraction despite enhanced perfusion. The effects of vasoactive agents on the hepatosplanchnic circulation are variable, mostly anecdotal, and depend on baseline perfusion, time of drug administration, and use of concomitant medication. Microvascular blood flow disturbances are thought to play a pivotal role in the development of sepsis-induced multiorgan failure. Redistribution of intrahepatic blood flow in concert with a complex interplay between sinusoidal endothelial cells, liver macrophages, and passing leukocytes lead to a decreased perfusion and blood flow velocity in the liver sinusoids. Activation and dysfunction of the endothelial cell barrier with subsequent invasion of neutrophils and formation of microthrombi further enhance liver tissue ischemia and damage. Substances that regulate (micro)vascular tone, such as nitric oxide, endothelin-1, and carbon monoxide, are highly active during sepsis. Possible interactions between these mediators are not well understood, and their therapeutic manipulation produces equivocal or disappointing results. Whether and how standard resuscitation therapy influences the hepatic microvascular response to sepsis is unknown. Indirect evidence supports the concept that improving the microcirculation may prevent or ameliorate sepsis-induced organ failure. Anat Rec, 291:714,720, 2008. © 2008 Wiley-Liss, Inc. [source] Forest fragmentation relaxes natural nest predation in an Afromontane forestANIMAL CONSERVATION, Issue 4 2009T. Spanhove Abstract Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004,2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans. [source] Plumage-based phylogenetic analyses of the Merops bee-eatersIBIS, Issue 3 2004D. BRENT BURT I review previous systematic work on the family Meropidae and present phylogenetic hypotheses derived from my analyses of colour, pattern and shape variation in 30 plumage regions among species and subspecies in this family. Consistent patterns are seen across shallow portions of the trees. Uncertainty remains concerning the placement of several deep branches within this group's phylogeny. In particular, the phylogenetic placement of Meropogon forsteni and Merops breweri, M. ornatus, M. hirundineus and M. boehmi remains uncertain. The biogeographical patterns in the resultant trees are similar with either a Southeast Asian or African origin for the family, with most of the early diversification occurring in Africa, and with multiple independent subsequent invasions of non-African areas. [source] |