Subsequent Alteration (subsequent + alteration)

Distribution by Scientific Domains


Selected Abstracts


Preliminary Results with the Simultaneous Use of Implantable Cardioverter Defibrillators and Permanent Biventricular Pacemakers: Implications for Device Interaction and Development

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2000
S. WALKER
We report our preliminary experience with the combined use of implantable cardioverter defibrillutors (ICD) and biventricular pacemakers in six patients with heart failure and malignant ventricular arrhythmia. Two patients underwent ICD implantation for malignant ventricular arrhythmia after previous biventricular pacemaker implantation. One patient underwent biventricular pacemaker insertion for NYHA Class III heart failure after previous ICD implantation. Two patients underwent single device implantation. In the sixth patient, a combined implantation failed due to an inability to obtain a satisfactory left ventricular pacemaker lead position. The potential for device interaction was explored during implantation. In two patients a potentially serious interaction was discovered. Subsequent alterations in device configuration and programming prevented these interactions with long-term use. No complication of combined device use has been demonstrated during a mean follow-up of 2 months (range 1-4 months). Satisfactory ICD and pacemaker function has also been demonstrated. We conclude that combined device implantation may be feasible with currently available pacing technology and that further prospective studies are required in this area. [source]


Oxygen isotopic alteration in Ca-Al-rich inclusions from Efremovka: Nebular or parent body setting?

METEORITICS & PLANETARY SCIENCE, Issue 8 2004
T. J. Fagan
The coarse-grained CAI (CGI-10) is a sub-spherical object composed of elongate, euhedral, normally-zoned melilite crystals ranging up to several hundreds of Pm in length, coarse-grained anorthite and Al, Ti-diopside (fassaite), all with finegrained (,10 ,m across) inclusions of spinel. Similar to many previously examined coarse-grained CAIs from CV chondrites, spinel and fassaite are 16O-rich and melilite is 16O-poor, but in contrast to many previous results, anorthite is 16O-rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O-poor compositions. CGI-10 originated in an 16O-rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine-grained CAI (FGI-12) also preserves evidence of a 1st-generation origin in an 16O-rich setting but underwent less severe isotopic alteration. FGI-12 is composed of spinel ± melilite nodules linked by a mass of Al-diopside and minor forsterite along the CAI rim. All minerals are very fine-grained (<5 ,m) with no apparent igneous textures or zoning. Spinel, Al-diopside, and forsterite are 16O-rich, while melilite is variably depleted in 16O (,17,18O from ,-40, to ,5,). The contrast in isotopic distributions in CGI-10 and FGI-12 is opposite to the pattern that would result from simultaneous alteration: the object with finer-grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser-grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI-10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O-poor melilite in coarse-grained CAIs from CV chondrites. [source]


Inactivation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene in squamous cell carcinoma of the larynx

MOLECULAR CARCINOGENESIS, Issue 3 2004
Robert Smigiel
Abstract Defects in the system controlling the cell cycle can lead an increased proliferation of cancer cells. The aim of our study was to analyze the relationship between genetic changes leading to inactivation of the CDKN2A gene and subsequent alteration of protein expression in squamous cell cancer of the larynx (SCCL) in connection with the clinical and histopathological course of the disease. Analysis was carried out on DNA isolated from the blood and primary larynx cancer cells of 62 patients. To investigate loss of heterozygosity (LOH), PCR fragment analysis was applied. The size and quantity of fluorescent PCR products were evaluated in an automated sequencer. Specific chemical methylation with sodium bisulfite in a sequential PCR reaction (MSP) was applied to analyze promoter methylation. Cancer tissue sections served to determine the level of protein expression with immunohistochemical (IHC) staining and commercial antibodies. LOH at the CDKN2A locus was observed in 55.35% of the informative cases. Aberrant methylation was found in 37.5% and a decreased level of protein expression observed in 45% of all informative cases. Whenever P16 expression was decreased, LOH and promoter hypermethylation at CDKN2A were observed with a frequency of 73.33% and 80.95%, respectively (Fisher's test, P,<,0.005). Sixty-nine percent of G3 tumors had at least one genetic alteration at CDKN2A, compared with 40.9% of G1 cancers. The results indicate that CDKN2A inactivation played a significant role in the development of squamous cell carcinoma of the larynx. © 2004 Wiley-Liss, Inc. [source]


The relationship between obesity and markers of oxidative stress in dogs

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 2 2009
M. G. Cline
Obesity, a serious epidemic affecting much of our pet population, increases the risk of developing numerous diseases. It has been demonstrated that obesity increases oxidative stress in obese children, cats and other species. Oxidative stress can result in DNA damage with subsequent alterations in gene expression, cell signaling, mutations, cell death or cell transformation. These effects of oxidative damage predispose animals and humans to numerous disease processes and cancer. The objective of the study was to demonstrate that obese dogs are under oxidative stress resulting in DNA damage and decreased endogenous antioxidant protection measured by serum glutathione levels and the ratio of reduced (GSH) to oxidized (GSSG) glutathione. In this case,control study, 10 obese dogs were compared with aged-matched healthy control dogs. Dogs with BCS of 7 or greater (9 pt scale) were considered obese. Dogs were evaluated by history, physical exam, body condition score, CBC, serum biochemical analysis and total T4, with both groups showing no significant differences in CBC, serum biochemical or T4 analysis. Single-cell gel electrophoresis (Comet assay) was used to measure DNA damage, and high performance liquid chromatography was used to measure serum glutathione. Reduced glutathione levels were significantly higher in the obese group (p = 0.012). The results of this pilot study suggest that obesity is associated with an increase in antioxidant potential, therefore justifying a larger study with antioxidant supplementation to determine how antioxidants in weight loss diets effects endogenous antioxidant capabilities. [source]