Home About us Contact | |||
Subcellular Alterations (subcellular + alteration)
Selected AbstractsSubcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblastsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2003Jennifer L. Mazzola Abstract The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated both in age-related neurodegenerative disease and in apoptosis. Previous in vitro studies suggest an interaction between GAPDH and the ,-amyloid precursor protein (,-APP), a protein directly involved in Alzheimer's disease (AD). New studies indicate that GAPDH is a multidimensional protein with diverse membrane, cytoplasmic, and nuclear functions; each is distinct from its role in glycolysis. The nuclear functions of GAPDH include a role in apoptosis that requires its translocation to the nucleus. Accordingly, ,-APP,GAPDH interactions, altering GAPDH structure in vivo, may affect energy generation, inducing hypometabolism, a characteristic AD phenotype. Because GAPDH is a multifunctional protein, pleiotropic effects may also occur in a variety of fundamental cellular pathways in AD cells. This may include unique GAPDH,RNA interactions. We report here the identification of a high-molecular-weight (HMW) GAPDH species present exclusively in the postnuclear fraction of AD cells. The latter is characterized by reduced GAPDH activity. The HMW GAPDH species was not detected in postnuclear age-matched control (AMC) fractions nor in AD whole-cell preparations. Each is characterized by normal GAPDH activity. By definition, the preparation of whole-cell extracts entails the destruction of subcellular structure. The latter findings indicate that the dissociation of the GAPDH protein from the HMW species restores its enzymatic activity. Thus, these results reveal a new, unique intracellular phenotype in AD cells. The functional consequences of subcellular alteration in GAPDH structure in AD cells are considered. © 2002 Wiley-Liss, Inc. [source] Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tipsMOLECULAR PLANT PATHOLOGY, Issue 2 2008QIAOCHUN WANG SUMMARY Accumulation of viruses in vegetatively propagated plants causes heavy yield losses. Therefore, supply of virus-free planting materials is pivotal to sustainable crop production. In previous studies, Raspberry bushy dwarf virus (RBDV) was difficult to eradicate from raspberry (Rubus idaeus) using the conventional means of meristem tip culture. As shown in the present study, it was probably because this pollen-transmitted virus efficiently invades leaf primordia and all meristematic tissues except the least differentiated cells of the apical dome. Subjecting plants to thermotherapy prior to meristem tip culture heavily reduced viral RNA2, RNA3 and the coat protein in the shoot tips, but no virus-free plants were obtained. Therefore, a novel method including thermotherapy followed by cryotherapy was developed for efficient virus eradication. Heat treatment caused subcellular alterations such as enlargement of vacuoles in the more developed, virus-infected cells, which were largely eliminated following subsequent cryotherapy. Using this protocol, 20,36% of the treated shoot tips survived, 30,40% regenerated and up to 35% of the regenerated plants were virus-free, as tested by ELISA and reverse transcription loop-mediated isothermal amplification. Novel cellular and molecular insights into RBDV,host interactions and the factors influencing virus eradication were obtained, including invasion of shoot tips and meristematic tissues by RBDV, enhanced viral RNA degradation and increased sensitivity to freezing caused by thermotherapy, and subcellular changes and subsequent death of cells caused by cryotherapy. This novel procedure should be helpful with many virus,host combinations in which virus eradication by conventional means has proven difficult. [source] The neuropathology of autism: where do we stand?NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2008C. Schmitz The neurobiology and neuropathology of the autism spectrum disorders (ASD) remain poorly defined. Brain imaging studies suggest that the deficits in social cognition, language, communication and stereotypical patterns of behaviour that are manifest in individuals with ASD, are related to functional disturbance and ,disconnectivity', affecting multiple brain regions. These impairments are considered to arise as a consequence of abnormal pre- and postnatal development of a distributed neural network. Examination of the brain post mortem continues to provide fundamental information concerning the cellular and subcellular alterations that take place in the brain of autistic individuals. Neuropathological observations that have emerged over the past decade also point towards early pre- and postnatal developmental abnormalities that involve multiple regions of the brain, including the cerebral cortex, cortical white matter, amygdala, brainstem and cerebellum. However, the neuropathology of autism is yet to be clearly defined, and there are several areas that remain open to further investigation. In this respect, more concerted efforts are required to examine the various aspects of cellular pathology affecting the brain in autism. This paper briefly highlights four key areas that warrant further evaluation. [source] Molecular genetics of premalignant oral lesionsORAL DISEASES, Issue 2 2007SK Mithani Oral squamous cell carcinoma (OSCC) is characterized by cellular and subcellular alterations that are associated with a progression towards dedifferentiation and growth. There are several histologically distinct lesions of the oral cavity which have malignant potential. These are leukoplakia, erythroplakia, lichen planus, and submucous fibrosis. These are characterized by a spectrum of chromosomal, genetic, and molecular alterations that they share with each other as well as with the malignant lesions that develop from them. In this review we summarize the investigation of the molecular genetics of each of these lesions and relate them to the alterations, which have been demonstrated in OSCC, to define their location on the continuum of changes, which lead to malignant transformation. [source] |